WHO KILLED MY RELATIVE? POLICE OFFICERS' ABILITY TO DETECT REAL-LIFE HIGH-STAKE LIES

ALDERT VRIJ* and SAMANTHA MANN
Psychology Department, University of Portsmouth, King Henry Building
King Henry 1 Street, Portsmouth PO12DY, UK

The present experiment examined the ability of fifty-two uniformed police officers to detect deception. The experiment differed from previous experiments into detecting deceit because of its high stake lies scenario. The judges were exposed to videotaped press conferences of people who were asking the general public for help in finding their relatives or the murderers of their relatives. They all lied during these press conferences and they all have been found guilty of killing their own relatives. The judges did not perform better than could be expected by chance. Additional analyses showed that accuracy was unrelated to confidence, age, years of job experience in the police force, or level of experience in interviewing suspects. There was, however, a significant positive correlation between having experience in interviewing suspects and being confident in detecting deception. Finally, men were better at detecting deception than women.

In scientific studies concerning detection of deception, observers are typically given videotapes or audiotapes and asked to judge whether each of a number of people is lying or telling the truth. The percentages of lie detection (or the accuracy rate) in most of these studies ranges from 45% to 60%, when 50% accuracy is expected by chance alone (DePaulo, Stone and Lassiter, 1985; Kraut, 1980; Vrij, 2000a; Zuckerman, DePaulo and Rosenthal, 1981; Zuckerman and Driver, 1985). In his review, Vrij (2000a) included 37 “recent” studies (studies conducted after 1980) and found an accuracy rate of 54%. The review further showed that people are to some extent capable of detecting truths (67% accuracy rate) but particularly poor at detecting lies (44% accuracy rate). Two explanations are usually given for these low accuracy rates. First, observers are mostly college students who do not habitually detect deception and, secondly, the deception detection does not take place in a natural setting. Both limitations are addressed in the present experiment.

* Corresponding author. E-mail: aldert.vrij@port.ac.uk.
Concerning the first limitation, it might be that professional lie-catchers, such as police officers or customs officers, would obtain higher accuracy rates than lay persons. It might be that their experiences in interviewing people and catching liars has a positive influence on their skills to detect deceit. We are aware of seven studies in which accuracy rates are reported and which have been carried out with professional lie catchers. The accuracy rates of these studies are given in Table 1.

Table 1 Accuracy scores of professional lie catchers

<table>
<thead>
<tr>
<th></th>
<th>Truth</th>
<th>Lie</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DePaulo and Pfeifer (1986)</td>
<td>64%</td>
<td>42%</td>
<td>53%</td>
</tr>
<tr>
<td>(federal law enforcement personnel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekman and O’Sullivan (1991)</td>
<td>66%</td>
<td>80%</td>
<td>73%</td>
</tr>
<tr>
<td>(secret service)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekman and O’Sullivan (1991)</td>
<td>56%</td>
<td>78%</td>
<td>67%</td>
</tr>
<tr>
<td>(federal polygraphers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekman and O’Sullivan (1991)</td>
<td>56%</td>
<td>78%</td>
<td>67%</td>
</tr>
<tr>
<td>(police officers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekman, O’Sullivan and Frank (1999) (federal officers)</td>
<td>56%</td>
<td>78%</td>
<td>67%</td>
</tr>
<tr>
<td>Ekman, O’Sullivan and Frank (1999) (sheriffs)</td>
<td>56%</td>
<td>78%</td>
<td>67%</td>
</tr>
<tr>
<td>Ekman, O’Sullivan and Frank (1999) (mixed law-enforcement officers)</td>
<td>54%</td>
<td>48%</td>
<td>51%</td>
</tr>
<tr>
<td>Köhnken (1987) (police officers)</td>
<td>58%</td>
<td>31%</td>
<td>45%</td>
</tr>
<tr>
<td>Vrij (1993) (police detectives)</td>
<td>51%</td>
<td>46%</td>
<td>49%</td>
</tr>
<tr>
<td>Vrij and Mann (in press) (police officers)</td>
<td>70%</td>
<td>57%</td>
<td>64%</td>
</tr>
<tr>
<td>Vrij and Graham (1997) (police officers)</td>
<td>54%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 shows that most of the professional lie catchers’ accuracy rates fall in the 45%–60% range, which was previously found in studies with college students as observers as well. This suggests that professional lie catchers are not better in detecting deception than are college students. The studies conducted by DePaulo and Pfeifer (1986) and Ekman and O’Sullivan (1991) actually support this. In both studies a group of college student observers were compared to a group of professional lie detectors. DePaulo and Pfeifer found that law enforcement personnel were not better in detecting deception than college students. Ekman and O’Sullivan found that police officers and polygraph examiners obtained similar hit rates to college students, although members of the Secret Service were better at detecting lies than college students. The latter finding suggests that some groups of police officers are better at detecting lies than others, a finding which was supported by the study conducted by Ekman, O’Sullivan and Frank (1999). Federal officers (a group of police officers with a special interest and experience in deception and demeanour) and sheriffs (a group of police officers who was identified by their department as outstanding interrogators) were considerably better at detecting lies than mixed law-enforcement officers (a group of officers who had not been chosen because of their reputation as interrogators).
Moreover, DePaulo and Pfeifer (1986) investigated how confident observers were in the decisions they made. They found that police officers were more confident than students, which suggests that being a professional lie catcher may increase confidence in the ability to detect deceit, but does not increase accuracy. Too much misplaced confidence in ability to catch a liar can be harmful in a deception task, as it is likely that when individuals are highly confident in their ability to detect deception, they are less likely to scrutinize a potential liar actively. High confidence often results in making quick decisions on the basis of limited information (Levine and McCormack, 1992; Lord, Ross and Lepper, 1979). High confidence is also likely to make people less motivated in learning more about the topic, as persons may consider that they already know enough about the topic. Finally, too much confidence may have consequences when information is presented in court. Research has indicated that jurors are particularly influenced by how confident witnesses are (Cutler, Penrod and Dexter, 1990; Cutler, Penrod and Stuve, 1988; Lindsay, 1994). In other words, police officers who express with confidence that the suspects’ behaviour showed that they were lying are more likely to believed by jurors.

It is not surprising that most professional lie catchers do not seem to learn how to detect deceit from their daily work experience given the poor outcome feedback they usually receive (DePaulo and Pfeifer, 1986). A traffic officer who decides not to breathalyse a driver will never find out whether the driver has been drinking. It seems reasonable that daily-life experience in detecting lies results in better insight among professional lie catchers only when they receive adequate outcome feedback.

Although professional lie catchers are not more accurate than lay people in catching lies, we believe that – for applied reasons – it is particularly interesting to examine professional lie catchers’ ability to detect deceit. Participating in these studies and reading the outcomes of such studies might make them aware that catching liars is more difficult than they might think, which eventually might make them less confident in their ability to detect deceit. Another benefit of using police officers is that they probably will be more motivated when participating in a lie detection task than college students, as they might think that such a test is relevant for their jobs.

With regard to the second limitation, there are several differences between catching liars in daily life situations compared to deception detection in laboratory studies (Vrij, 1998a; 2000a). Differences which might make the task more difficult for observers in a laboratory include:

- they are watching a video and therefore do not have the opportunity to actually interview the potential liars;
- they have to make their decision quickly as to whether or not someone is lying (usually within ten seconds) and do not have time to think about their decisions;
• they can only observe the supposed liar for a short time (usually for less than one minute), and would probably wish to observe the person they are exposed to for a longer time;

• they are usually exposed to liars who lied in a deception experiment and not in real-life. For those liars the stakes usually are not very high, that is, the liars do not face a strong penalty or a substantial reward when their lies would or would not be detected.

It is not clear whether all of these constraints actually make the task more difficult for lie detectors in laboratory studies. For example, it is dubious whether having the opportunity to interview the potential liar improves detection accuracy. In a study conducted by Stiff, Kim and Ramesh (1992) observers actually interviewed the potential deceiver. The detection rates were not higher than the accuracy rates in studies with passive observers. Buller, Strzyzewski and Hunsaker (1991) compared the accuracy scores of observers who actually interviewed potential liars with those who observed the interviews but did not interview the potential liars themselves. The results revealed that the observers were more accurate in detecting lies (49% accuracy score) than the interviewers (29% accuracy score). More recently, Feeley and deTurck (1997) also found that observers were more accurate in lie detection (50%) than interviewers (43%). Both Feeley and deTurck (1997) and Granhag and Strömwall (1998) found a strong truth-bias amongst interviewers: Interviewers tend to believe a liar more than observers do. These findings suggest that actually interviewing someone is a disadvantage in detecting deceit. This finding is perhaps not surprising. Interviewers need to concentrate on the interview itself. For example, they have to decide what to ask, how to phrase their questions, and at what moment in the interview they are going to ask these questions. Additionally, they must listen to the interviewee and reply to what they say. This requires cognitive energy which can not be used for the lie detection task. Observers on the other hand do not have to bother about the flow of the conversation and can fully concentrate on the lie detection task (Vrij, 2000a).

An additional advantage for observers is that they can thoroughly observe the potential liar, literally from head to foot. Active interviewers can not do this, as it would make an odd impression. Conversation rules prescribe that conversational partners look each other in the eye. Eye movements, however, do not give reliable information about deception (DePaulo et al., 1985; Zuckerman et al., 1981; Zuckerman and Driver, 1985). An observer does not have to concentrate on someone’s face and thus can pay attention to other, perhaps more useful pieces of information.

The fact that not much is at stake for those liars whose lies are to be detected in laboratory studies is a more serious constraint. In order to raise the stakes for liars in laboratory studies, the ability to lie convincingly is
often introduced as an important skill, and successful liars are promised money or other rewards. Although this results in raising the stakes to some extent probably comparable to the stakes in most daily life situations (DePaulo, Kashy, Kirkendol, Wyer and Epstein (1996)), these studies do not tell us anything about lying in high-stake situations, such as police interviews (Ekman, 1992; Frank and Ekman, 1997; Vrij, Semin and Bull, 1996). It is unlikely that liars will show clear behavioral clues to deception in situations in which the stakes are rather low (DePaulo et al., 1996; Ekman, 1993; Ekman and Frank, 1993; Vrij, 1998a,b; 2000b). The absence of cues to deceit might explain why people in laboratory studies are particularly poor at detecting lies. Unfortunately, laboratory experiments will never tell us how liars behave when the stakes are really high, because it is unethical to raise the stakes too high in such experiments. Someone needs to examine lies in real life high-stake situations in order to discover this. However, in real life cases it is usually difficult to determine the ground-truth, that is, to obtain certainty whether someone is lying or not. Vrij and Mann (in press) were the first researchers to conduct a detection of deception study in a realistic high stake setting. They exposed their observers (police officers) to a real-life high stake liar in which certainty was obtained about the ground truth. The material observed was a videotaped police interview with a suspect who was accused of murder. Because of the nature of the crime, the suspect was aware that a possible conviction would most likely result in a full life imprisonment sentence. Although the suspect initially denied knowing and killing the victim, substantial evidence (for instance, a hair of the victim was found in the suspect’s car) obtained by the police showed that he was lying. On the basis of this substantial evidence, he confessed to killing the victim and was later convicted for murder and sentenced to full life imprisonment. The officers were exposed to fragments of the interview in which the suspect was either lying or telling the truth. The accuracy rate in this study was slightly higher than usual, namely 64% (see Table 1). However, a distinction between detecting truths and lies showed that the officers were much better at detecting truths (70% hit rate) than lies (57%). A possible limitation of this study was that judges were exposed to only one target-person. It might have been particularly easy or difficult to detect his truths and lies. A better test to find out how good people are at detecting high-stake lies would be to expose them to a number of liars. That is what we have done in the present study.

In the present study, police officers were exposed to five high-stake lies told by five different people. Videoclips were presented of press conferences given by five people whose relatives were missing or had been killed. In these press conferences, where journalists and police officers were present and which were broadcasted on British television, they asked the public for information about the whereabouts of their relatives (in cases where they
were still missing) or for information which could lead to the identification of the murderers of their relatives (in cases where a body had been found). Following each press conference, police investigation has established that all five people were lying during these press conferences (see the Method section for further details) and each of them have been found guilty of killing their own relatives (the missing relatives were, in fact, already dead at the time of the press conferences). All five people were convicted in English courts.

As previously mentioned, the videotapes were already shown on British television. This made it impossible to use British police officers as judges because they might already have seen the videotapes or might have heard about (some of) the cases. We therefore conducted this study in the Netherlands. The cases are unknown in the Netherlands (as the judges indicated, none of them had ever seen the clips or had heard about the cases before). Using Dutch judges might create a problem. The target-persons spoke English and English is not the native language for Dutch police officers. We did not consider this to be a problem. First, most Dutch police officers do speak English. Second, to facilitate their understanding of the liars, a brief summary of the issue discussed by the target-persons was presented before each fragment. Third, we asked the judges to indicate after each fragment whether or not they could actually understand what the target-person was saying. All participants included in the analyses indicated that they were able to understand what the target-persons were saying.

We were interested in possible differences in accuracy rates between male and female judges. Although women are superior to men in reading non-verbal messages, they are not better than men in detecting lies (DePaulo, Epstein and Wyer, 1993; Hurd and Noller, 1988; Manstead, Wagner and MacDonald, 1986). Women are, however, less suspicious than men and are more inclined to assume that someone is telling the truth (DePaulo et al., 1993). Women are better than men in decoding information that someone wants to convey. During deception, however, liars try to hide their true feelings and thoughts. When detecting lies, observers therefore would be better off not to look at what people want to convey but to look at what they try to conceal. Women are not better than men in doing this. When women try to detect lies they are possibly affected too much by what someone tries to convey, which makes them more credulous than men (DePaulo et al., 1993). In the present study, all of the target-people were liars. Consequently, judges who are extremely suspicious would be particularly good at the lie detecting task. As men are generally more suspicious than women, we expected men to obtain a higher average accuracy rate than women.

Previous researchers have found that confidence in one’s ability to detect deceit was unrelated to accuracy (see DePaulo, Charlton, Cooper, Lindsay and Muhlenbruck (1997) for a review). Also, age and years of experience
were found to be unrelated to actual accuracy (Ekman and O'Sullivan, 1991; Köhnken, 1987). We sought to replicate these findings in the present experiment. Previous researchers did not investigate whether police officers’ experience with interviewing suspects had an impact on their accuracy and confidence in detecting deceit. We considered this variable to be relevant, as this aspect of their job in particular makes police officers professional lie catchers. Because previous findings suggest that being a professional lie catcher often makes someone more confident but not more accurate in detecting deceit, we expected experience in interviewing suspects to be positively related to confidence in detecting deceit, but not to be related to accuracy.

We also asked our participants to describe the behavioral clues they relied on in making their judgments. Previous research has indicated that judges particularly pay attention to gaze behaviour (Vrij and Mann, in press; Vrij and Semin, 1996). We therefore expected that gaze behaviour would be often mentioned. As mentioned before, gaze behaviour is not a reliable indicator of deception. The liars in this study are no exception to this rule. Three liars showed gaze aversion, but the other two liars did not show gaze aversion, and instead looked at the audience or into the camera. We therefore did not expect participants’ mentioning gaze aversion to be significantly correlated with accuracy in detecting deceit. Previous research has shown that fidgeting is often seen as an indicator of deception as well (Vrij and Mann, in press; Vrij and Semin, 1996). None of the target-persons in this study showed fidgeting behaviours, so we did not expect this cue to be mentioned.

Most target-persons clearly appeared upset about the fact that their relatives had been murdered or had gone missing, and asked for help from the general public to find the murderers or missing relatives in an emotional manner. We therefore expected “being emotional” to be often mentioned as well. However, because they were actually lying in the interviews, these emotions might have not been genuine. We therefore expected a significant positive correlation between accuracy and mentioning that these emotions were “not real” (or a negative correlation between accuracy and mentioning that these cues were “real”).

METHOD

Participants

Fifty-two police officers from various police stations in the Netherlands participated in the study, 28 males and 24 females. The mean age was $M = 31.14$ years ($SD = 7.66$) and mean length of service was $M = 9.17$ years ($SD = 1.19$). Their average self-rating of experience of interviewing suspects
was $M = 3.38$ (SD $= 1.69$) (on a 7 point Likert scale, where 1 = little experience and 7 = a lot of experience).

Procedure

The study was conducted at the beginning of a lecture, about "interviewing suspects", which was given by the first author at a Dutch police school. (In the Netherlands, as in many other countries, uniformed police officers regularly visit police schools for additional police training). Thirty-eight uniformed police officers attended this lecture and all were tested at the same time. To collect some additional data, the study was also conducted at local police forces. A police officer confederate approached uniformed police officers during their coffee break and asked them to participate in a small study testing their ability to detect deceit. Groups of 4–5 participants were tested at a time. Data of those who attended the lecture and those who were recruited during their coffee break were combined, as analyses did not reveal differences between the groups. Participants were requested to read the front sheet of a questionnaire in which the purpose of the study and the nature of the video clips were outlined. It was stated that they would see eight different people during eight different press conferences. In the press conferences these people ask the general public about the whereabouts of their relatives (in cases where they were missing) or about information about the murderer (in cases where the relative had already been found dead). Police investigations, however, have shown that some people are lying during these press conferences, and have been found guilty of killing their own relatives. It was stated that the task in this study is to indicate (1) for each person whether that person is lying, and (2) how confident the participant is in this decision. It was also explained that after each fragment there is 25 seconds to answer the questions. Finally it was mentioned that the people in the video speak English, but that a brief outline of the topic of each press conference was given in the questionnaire.

After reading this instruction, participants were asked to have a brief look at the actual questionnaire. In the questionnaire the fragments were numbered 1 to 8, and per fragment a brief outline was given. For example, fragment 1: daughter is missing, fragment 2: girlfriend is murdered and so on. After each fragment the following three questions were asked: (1) Is the person lying? (yes or no), (2) How confident are you in your decision? (1 = not confident at all and 7 = very confident) and (3) could you understand what the person was saying? (yes or no). Finally, after seeing each fragment the participants were asked to write down which behavioral cues had prompted them to make their decision.

The experimenter then started the videotape in which eight different people in eight different press conferences were presented: The five liars
(target of this study) and three fillers. The three fillers were people in three other press conferences who most likely spoke the truth, that is, who most likely were making a genuine plea to the public. These three fragments, however, could not be used in this study because absolute certainty about the truthfulness of their statements is missing. Data concerning these three fragments will be disregarded in the main text, and will only be presented in a footnote. We included those fragments in the videotape because participants in this kind of task usually have a tendency to expect and therefore judge some people to be truthful and others as liars. As a result, the correct answers – five lies – would be very unlikely to occur if we had only presented the five liars. The average duration of the five fragments used in the study was $M = 42$ seconds, where the shortest lasted 22 seconds and the longest 62 seconds. All participants saw the eight fragments in the same order. We believed that varying the order was not necessary in this study. Order manipulations are carried out to control for a “fatigue effect”: Participants may get tired or distracted at the end of a lie detection test. Although this might happen in the average lie detection test (which usually takes up to 30 minutes), it was unlikely to occur in our test which lasted less than 8 minutes.

Ground Truth Concerning the Five Liars

In all five cases substantial evidence was found to discredit the accused people’s claims concerning the fate of their relatives. The evidence included confirmation via a security camera that the accused had been in a shop and paid for something, although the accused claimed that he forgot his money that day (liar 1), the accused claimed to receive a telephone call from someone saying that the victim was alive and at home, although the victim was already dead at the time of the telephone call (liar 1), confirmation via a bus ticket machine that the accused was alone and not, as claimed, with the victim (liar 2), reconstructions in which the accused made a serious mistake (liar 2), the accused could not account for the considerable time period between starting the journey and calling the police (liar 3), blood stains made clear that the victim was actually killed somewhere other than where claimed (liar 3), blood stains which were found inside the accused’s boot (liar 3), a postmortem which demonstrated that the accused’s wife was already dead at the time the accused claimed that she was still at home (liar 4), anaesthetists who say that it is impossible that the accused could have been knocked out for ten hours as he claimed (liar 4), bruise patterns on the accused which were inconsistent with the account offered by the accused as to how and where he was hit (liar 4), forensic evidence which indisputably proved that the fire started from within the house (liar 5).
RESULTS

Hit Rates

The mean accuracy score of detecting deceit was 50%; the same percentage could be expected on the basis of chance alone. Also, individual scores showed that the detection task was difficult. The highest accuracy rate was 80% which was achieved by only three participants. The other 49 police officers obtained hit rates of 0% (1 officer), 20% (3 officers), 40% (20 officers) and 60% (25 officers). Apparently, the police officers were not very good at detecting the high-stake lies they were confronted with. Their average confidence score was $M=3.91$ (SD = 1.19) (on a 7-point rating scale ranging from (1) not at all confident to (7) very confident), suggesting that the participants were somewhat insecure in the decisions they made.

Males and females differed, apart from gender, in more respects from each other. Males were older ($M=35.53$ vs. $M=26.92$, $F(1,50)=22.15$, $p<0.01$), had more years of job experience in the police force ($M=13.50$ vs. $M=4.12$, $F(1,50)=21.61$, $p<0.01$), and were more experienced in interviewing suspects ($M=4.29$ vs. $M=2.33$, $F(1,50)=25.38$, $p<0.01$). Therefore, these three variables were used as covariates in the analyses examining gender differences in accuracy and confidence in detecting deceit. In order to examine such gender differences, analyses of covariance were conducted with Gender as the only factor and age, years of job experience and experience in interviewing suspects as covariates. As predicted, males were more accurate ($M=0.55$) in detecting deceit than females ($M=0.44$), $F(1,47)=7.30$, $p<0.01$. However, the Gender effect regarding confidence was not significant, $F(1,47)=0.98$ ns.

Correlations

In order to examine relationships between accuracy and the other demographic characteristics, several Pearson correlations were computed. Accuracy was unrelated with age ($r(52)=0.00$ ns), number of years of job experience in the police force ($r(52)=0.09$ ns), and experience in interviewing suspects ($r(52)=0.22$ ns). Confidence was unrelated with age ($r(52)=0.20$ ns), and number of years of job experience in the police force ($r(52)=0.21$ ns). As predicted, confidence was significantly correlated with experience with interviewing suspects ($r(52)=0.43$, $p<0.05$): The more experienced the officers were with interviewing suspects, the more confident they were in their judgments. Finally, accuracy was not related to confidence in decision making ($r(52)=0.22$ ns). However, the correlation was positive which means that officers who were more confident were more likely to claim that the messages were deceptive. This contradicts DePaulo et al.’s (1997)
meta-analysis in which was found that judges who were more confident were also more likely to perceive the messages as truthful.

Cues Used by the Officers

The open-ended question regarding which cues had prompted the police officers to make their decision resulted in a total of 166 descriptions ($M = 3.19, SD = 1.8$). These 166 descriptions represented 23 different cues. Three of these 23 cues were most frequently mentioned, namely "fake emotions" (27 police officers mentioned this cue at least once), "real emotions" (25 police officers mentioned this cue at least once), and "gaze aversion" (22 police officers mentioned this cue at least once). Each cue could be mentioned five times maximum (after each fragment). Correlations were conducted between accuracy and how often the cues were mentioned. A significant negative correlation was found between accuracy and mentioning that the emotions were real ($r(52) = 0.31, p < 0.05$). In other words, the more often the officers indicated that the target person showed real emotions, the less accurate they were. The correlations between mentioning gaze aversion and accuracy ($r(52) = 0.20$) and between accuracy and saying that the emotions were not real ($r(52) = 0.17$) were not significant.

DISCUSSION

An important limitation of previous research into the detection of deception is that observers in these studies were confronted with rather low-stake lies. In the present study observers (police officers) were shown press conferences of five people who were asking the help of the general public in finding their relatives or the murderers of their relatives. All five people, however, lied during their press conferences and, in fact, were convicted for killing their own relatives. Despite the fact that the lies were high-stake, the accuracy rates found in this study were similar to the accuracy rates found in previous studies. Previous findings have indicated that detecting deceit is a difficult task at which even police officers are not particularly good. The present findings provide further (and keeping in mind the high ecological validity of the study) relatively strong evidence for this conclusion. The average accuracy rate in the present study was 50% and only three police officers (out of a total of 52) achieved a high accuracy score of 80%.

Several other findings were similar to those of previous studies. Again, it was found that accuracy is not related to confidence, age and years of job experience; again it was found that police officers mentioned gaze aversion as an important cue to detect deceit, and again mentioning gaze aversion was unrelated to the judges' ability to detect deceit. Unlike previous studies, we
found a gender effect in detecting deception with males being more accurate than females. As mentioned in the introduction, this is probably caused by the fact that men are usually more suspicious than women. Being suspicious would benefit the lie detector in this particular lie detection task where they were only exposed to liars.

As far as we know, we are the first researchers to examine the influence of having experience in interviewing suspects on accuracy and confidence. Having experience with interviewing suspects was not related to accuracy in detecting deceit but was significantly correlated with confidence: The more experienced the officers were in interviewing suspects the more confident they were in their ability to detect deception. As mentioned before, increased confidence amongst police officers in detecting deceit is undesirable. It may result in a less thorough analysis of potential liars, may refrain police officers from reading more about this topic, or may let them make too self-assured statements in court about whether or not an accused person’s behaviour reveals deceit. Hopefully, the present study will make professional lie catchers aware of the difficulty of this task.

Although we believe that the present study tells more about people’s ability to detect high-stake lies than most of the previous studies, it still might have shortcomings. Perhaps one limitation was the duration of the fragments. The fragments were short and longer fragments might have been desirable. At present, we are analyzing videotaped police interviews with suspects. One preliminary finding is that suspects usually tell short lies. One reason for this is that lies are often incorporated in truthful stories. That is, suspects tell stories which are largely accurate but lie only about some (crucial) details, such as the time the event took place or their particular role in the event ("I was there, but I was not the one who stole the money"). Another reason is that lies sometimes consist of concise, total denials ("I have nothing to do with it, I was at home, I was tired and went to bed early"). In other words, lengthy lies seem to be rare in police interviews, which makes the present study more realistic than one might initially think.

Notes

1. As in past studies (Frank and Ekman, 1997), we tried to avoid police officers from assuming that all people in the video were either lying or telling the truth. We therefore informed police officers that some of them were lying.
2. The hit rate for the three truths was 51%, which did not differ from chance. Neither did the hit rates for lies and truths differ significantly from each other, $F(1, 51) = 0.10$ ns.
3. Comparisons between unsuccessful officers could not be carried out, as only three officers were very successful (80% hit rate or higher) and only four officers were very unsuccessful (20% or lower). Most officers were at the level of chance (40–60%).
References

