Spotting Lies: Can Humans Learn to Do Better?

Bella M. DePaulo

Though cynicism may seem rampant, the empirical fact is that most people seem to believe most of what they hear most of the time. I have seen this repeatedly in the studies my colleagues and I have conducted on the detection of deception. ¹ To determine whether people can separate truths from lies, we show them videotapes we have made of people we know to be lying or telling the truth. The topics of these lies and truths vary widely. For example, sometimes the people on the tape are talking about their feelings about other people they know; other times, the speakers are describing their opinions about controversial issues; in still other studies, they are talking to an artist about their preferences for various paintings, some of which are the artist’s own work. When we show people (“judges”) these tapes, we ask them to tell us, for each segment that they watch, whether they think the person on the tape (the “speaker”) was lying or telling the truth. We also ask them to indicate, on rating scales, just how deceptive or truthful the speaker seemed to be. We might also ask them how they think the speaker really did feel and what impression the speaker was trying to convey about how he or she felt. For example, it might seem that the speaker was politely trying to give the impression that she liked the person she was describing, when in fact she detested that person.

Typically, the tapes that we play for our judges include equal numbers of truths and lies. Yet when judges watch or hear the tapes, they almost always think that many more of the messages are truths than lies. (One of the rare exceptions was a study in which the speakers on the tape were experienced salespersons pitching the kinds of products that they sell; in that study, the judges more often thought that the salespersons were lying. ²) Similarly, judges typically believe that the speakers really do feel the way they are claiming to feel. When a speaker claims to like a painting, the judges are more inclined to believe that he or she really does like it than to infer that the kind words are a facade to cover genuine loathing.

Despite this compelling inclination to take what other people say at face value, judges are not totally blind to the differences between truths and lies. When we ask them to indicate just how deceptive or truthful the speakers seemed to be, judges reliably rate the lies as somewhat more deceptive than the truths. The ratings of both the lies and the truths are almost always on the truthful end of the scale; still, the lies seem to the judges to be a little less truthful than the truths. ³ When we study humans’ ability to detect lies, it is this ability to distinguish truths from lies that we examine.

Bella M. DePaulo is Professor of Psychology at the University of Virginia and recipient of a Research Scientist Development Award from the National Institute of Mental Health. Address correspondence to Bella DePaulo, Department of Psychology, Gilmer Hall, University of Virginia, Charlottesville, VA 22903; e-mail: bmd@virginia.edu.

---

Would People Be Better Lie Detectors If They Had More Experience At It?

To distinguish truths from lies may require some knowledge or
sensitivity about the ways that lies differ from truths. Perhaps this sort of understanding comes with endless practice at trying to detect deceit. Roger Pfeifer and I studied the lie detection skills of federal law enforcement officers who had worked for years at jobs that routinely involved attempts to detect deceit. These officers and undergraduate students who had no special experience or training at detecting deceit both listened to the same audiotapes of students who were lying or telling the truth about their opinions about controversial issues. Across this test of 32 lies and 32 truths, the officers were no more accurate than the students at discriminating truths from lies—they only thought they were. That is, the officers were more confident than the students, and their confidence increased over the course of the test, although their accuracy did not. A study of experienced customs inspectors told the same tale: They were no better than laypersons at discerning which potential “smugglers” to search in a mock customs inspection conducted at an airport. Similarly, in studies of special groups of people who should be especially skilled lie detectors—members of the U.S. Secret Service, federal polygraphers, judges, police, psychiatrists, and special interest groups (e.g., business people and lawyers)—as well as students, Paul Ekman and Maureen O’Sullivan have found generally unimpressive levels of accuracy at detecting deceit. Of those groups, only the Secret Service did particularly well.

Another kind of experience that intuitively might seem to predict skill at knowing when someone is lying is the kind that comes from getting to know someone over the course of a deepening relationship. Should not dating partners, spouses, and close friends be much more perceptive than strangers at spotting each other’s lies? Once again, research has shown that experience is no guarantee of sensitivity to deceit. Compared with strangers, relational partners are more trusting of each other’s truthfulness and more certain that their impressions of each other’s truthfulness or deceptiveness are correct. But unless that trust is severed somehow, they are ordinarily not more accurate at detecting each other’s deceit.9

Perhaps there is still another way in which experience might predict skill at detecting deception. Maybe any special skills that people have at detecting deceit are specific to the kinds of lies they are most experienced at hearing—the “I’ve heard that one before” phenomenon. My colleagues and I already knew from prior work in our lab that people lie differently to attractive people than to unattractive people. Interestingly, they lie more transparently to the former. We wanted to know whether the lies told to attractive people are especially transparent to judges who are themselves attractive. To test this idea, we asked judges who were themselves either attractive or unattractive to watch tapes of speakers who were lying and telling the truth to attractive and unattractive listeners.10 The judges, however, could see only the speakers; they did not even know that the listeners varied systematically in attractiveness. Further, the speakers all lied and told the truth about the same topics—their opinions on controversial issues. These were not the stereotypical “gee, what beautiful eyes you have” kinds of lies. We found, once again, that the lies told to attractive listeners were easier to detect than were the lies told to unattractive listeners. More important, the lies told to attractive listeners were especially obvious to the judges who were themselves attractive. The unattractive judges, in contrast, did relatively better at detecting the lies told to the unattractive listeners.

There is other evidence, too, that skill at detecting lies may be specific to particular kinds of lies. For example, we have found that the ability to detect lies when liars are trying to hide their fond feelings is not related to the ability to detect lies when liars are trying to conceal ill will. We have also found that skill at detecting women’s lies is unrelated to skill at detecting men’s lies.11 There is another interesting bit of evidence of specificity, which comes from a study in which Miron Zuckerman and his colleagues tried to train judges to be more accurate detectors of deceit.12 The training procedure was very straightforward. Judges watched a segment in which a speaker was lying or telling the truth, and then they recorded their judgment as to whether the speaker was lying. Next, they were told whether the segment was in fact a lie or a truth. This procedure was repeated for several lies and truths told by the same speaker. Judges who were “trained” in this way did indeed become better at detecting deception, but only when watching the speaker they were trained on. Their new and improved deception detection skills did not generalize to different liars.

There is even evidence for specificity at a cultural level. Charles Bond and his colleagues have shown that both Americans and Jordanians can distinguish lies from truths when judging members of their own culture; however, they cannot differentiate each other’s truths and lies.13

How Do Lies Differ From Truths?

Intuitively, it may seem that the best way to train people to detect deceit is to instruct them about the kinds of behaviors that really do distinguish truths from lies and to give them practice at recognizing such behaviors. This approach assumes that there are known differences between truths and lies, and in fact there are.1

Meta-analyses of the many stud-
ies of cues to deception reported in the literature indicate that when people are lying, they blink more, have more dilated pupils, and show more adaptors (self-manipulating gestures, such as rubbing or scratch- ing) than they do when they are tell- ing the truth. They also give shorter responses that are more negative, more irrelevant, and more general- ized. They speak in a more distanc- ing way (as if they do not really want to commit themselves to what they are saying), and they speak in a higher pitch. Though people who are about to tell a lie take more time to plan what they are about to say than do people who are about to tell the truth, the resulting statements tend to be more internally discrepant and more marred by hesitations, repetitions, grammatical errors, slips of the tongue, and other disfluencies. The lies seem rehearsed and lacking in spontaneity.¹⁴

There are, then, some important behavioral cues to deception. But for a variety of reasons, I am not optimis- tic about the prospects of teaching these cues directly, despite the fact that some limited successes have been reported. First, although these findings were obtained across a variety of studies, they are quali- fied in important ways. For example, it is possible to divide the studies into categories based on whether the liars were more or less motivated to get away with their lies. When this is done, it becomes apparent that the cues to deception differ. When people are more highly motivated to get away with their lies (compared with when they do not care as much), they shift their postures less, move their heads less, show fewer adaptors, gaze less, and even blink less when they are lying than when they are telling the truth. Their answers are also shorter and spoken more slowly. The overall impression they seem to convey is one of inhibition and rigidity, as if they are trying too hard to control their behavior and thereby overcontrolling it. (It may be this dampening of expressiveness that accounts for another counterintuitive finding documented repeat- edly in my lab—that is, that people who are most motivated to get away with their lies are, ironically, least likely to be successful at doing so when other people can see or hear any of their nonverbal cues.) Degree of liars’ motivation is just one of the factors that will qualify conclusions about cues to deceit. There will be many others. For example, cues to deceit should vary with emotional state. The liar who feels guilty about a grave offense, for example, will probably lie in different ways than will a friend bubbling over with glee in an attempt to conceal a surprise birthday celebration.

Second, all these cues are associ- ated with deceit only probabilisti- cally. There is no one cue that al- ways indicates that a person is lying. And each of the cues that is associ- ated with deceit is also associated with other psychological states and conditions. For example, people speak in a higher pitch not only when they are lying but also when they are talking to children.

Third, as suggested by the train- ing study in which improvement did not generalize to different liars, there are important individual differences in the ways that people lie. When Machiavellian people are rightly accu- sed of lying, for example, they look their accusers in the eye while denying they have lied. It is the “low-Mach” types who conform to the cultural stereotype about lying and instead look away. Further, to determine when a person is lying, it is important to understand that person’s usual ways of behaving. For instance, although halting and disfluency speech can be a sign of deceit, there are people who characteristi- cally speak haltingly and disfluently; for them, verbal clutter is unlikely to indicate deceit unless it is even more marked than usual. Moreover, some people may be so skilled at lying that it is virtually impossible for anyone to distinguish their lies from their truths. In the study of experienced salespersons, for example, the same kinds of judges (introductory psy- chology students) who could detect differences between the truths and lies of inexperienced liars could see no differences at all between the truths and lies told by experienced salespersons.² Even when the judges were given a hint that improved their lie detection success when they were observing inexperienced liars (namely, to pay special attention to tone of voice), they still could not differentiate the salespersons’ lies and truths.

Does this mean that it is hopeless to try to refine people’s sensitivity to the differences between truths and lies? Perhaps not. I think people know more about deception than it appears when experimenters ask them directly whether they think someone is lying. Sometimes people who cannot distinguish truths from lies by their ratings of deceptiveness can make a distinction by their ratings of some other attribute, such as ambivalence. Also, when people talk out loud as they try to decide whether someone is lying or not, they sound less confident when the message they are considering is a lie than when it is a truth; further, they are more likely to mention the possi- bility that the message is a lie when it really is.¹⁵ Interviewers sometimes behave differently toward liars than toward truth tellers; for example, they might ask liars more questions that sound suspicious.¹⁶ I think, then, that people have implicit knowledge about deception that they do not quite know how to access. Just how they can learn to access it is the question my students and I are currently pursuing.

Notes

2. P.J. DePaulo and B.M. DePaulo, Can at-
Attention can be thought of as a cognitive mechanism designed to enhance perception of a complex sensory world by selecting certain aspects of perceptual input to process further. The means by which attention accomplishes this goal have been studied primarily in the visual and auditory modalities, with a significant emphasis on the former. In studying visual attentional mechanisms, principal investigators in the field, such as Posner and Treisman, have concentrated their research efforts on one of the major demands on attention—the ability to select a particular part of visual space for further analysis. By visual attention, I mean the ability to monitor a part of the visual field for a change in stimulation, not the ability to move one’s eyes to a new location. For example, a baseball pitcher has such an attentional demand when he keeps his eye on the batter as he starts to pitch but must at the same time monitor the part of his visual field corresponding to first base to detect if a runner is attempting to steal second base.

Significant findings from these investigations have concluded (a) that one can focus attention on a particular region of visual space and by doing so be faster to detect something occurring in that space than in an equivalent space not being monitored, and (b) that a stimulus with a particular feature of a dimension (e.g., color) can be detected very rapidly from among a homogeneous field of stimuli possessing a different feature of that same dimension. For example, a red-shirted friend is easier to spot in a crowd of people if everyone else in the crowd is wearing a blue shirt than if the people are wearing shirts of various colors.

Whereas most of the research in visual attention has examined attention over space in a brief moment in time, as just described, some researchers have examined attention over time in a fixed location in space. Research in my laboratory over the past few years has explored this latter kind of attention using a modification of a procedure developed by Sperling and his colleagues.

To study this phenomenon, we simulate the conditions under which a human might receive very rapidly changing information over a short period of time, for example, during a series of rapid saccades (eye movements). This simulation technique is referred to as rapid serial visual pre-
This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.