Referendum contingent valuation, anchoring, and willingness to pay for public goods

Donald Green a, Karen E. Jacowitz b, Daniel Kahneman c, Daniel McFadden d,

a Department of Political Science, Yale University, New Haven, Conn., USA
b Department of Psychology, University of California, Berkeley, CA, USA
c Department of Psychology, Princeton University, Princeton, NJ, USA
d Department of Economics, University of California, Berkeley, CA, USA

Received 28 December 1995; accepted 7 November 1996

Abstract

This study reports on experiments that examine anchoring in single referendum questions in contingent valuation surveys on willingness to pay for public goods, and on objective estimation. Strong anchoring effects are found that lead to systematically higher estimated mean responses from Yes/No referendum responses than from open-ended responses. This response pattern is similar for contingent valuation questions and for objective estimation questions. The paper concludes that psychometric anchoring effects, rather than incentive effects, are the likely cause of results commonly found in contingent valuation studies, and that the currently popular single referendum elicitation format is highly vulnerable to anchoring. © 1998 Elsevier Science B.V.

Keywords: Contingent valuation; Willingness to pay; Anchoring

1. Introduction

Single referendum contingent valuation (CV) is a protocol for elicitation of Willingness-to-Pay (WTP) for public goods. Subjects are each presented with a
hypothetical referendum that specifies a good to be supplied and a payment, and asked to vote on this referendum. The payment, or bid, is varied experimentally to provide a profile of the cumulative distribution function (CDF) of WTP at the experimental design points. This protocol has gained widespread use in applications to valuation of natural resources, and has largely displaced older protocols in which subjects were asked to state an open-ended WTP for a good, or to reveal a WTP range by responses to a sequence of bids or choices from a set of alternatives.

A CV study will give a biased revelation of preferences if it contains incentives for strategic misrepresentation, or if the context of the survey question alters the psychometric perceptions of the subject. The classic ‘free-rider’ problem for public goods, in which a subject expecting to be dunned for payment has an incentive to understate WTP, is an example of the first source of bias. Anchoring, in which a numerical prompt alters psychometric response, is an example of the second source. Economists have concentrated on incentives as a source of bias, and this has been the focus of research on mechanisms for revelation of preferences. We argue in this paper that psychometric bias may be a more serious problem, and that protocols designed to reduce possible incentive bias may exacerbate psychometric bias. In particular, we argue that single referendum CV is susceptible to anchoring effects. Using experiments involving both CV and objective estimation tasks, we show that anchoring effects have a common structure across tasks, and appear to have no features that clearly distinguish their operation between CV and estimation tasks. This suggests that objective estimation and preference elicitation entail similar cognitive processes.

Section 2 reviews the historical development of CV methods. Section 3 summarizes results on anchoring. Section 4 describes the experiments and their results. Section 5 contains conclusions.

2. Historical development of contingent valuation methods

The concepts in economic theory underlying CV methods are preferences characterized in monetary units (consumer surplus, compensating variation, willingness to pay), the Kaldor–Hicks compensation principle as a criterion for aggregating individual preferences into a social choice rule, and Samuelson’s theory of optimal supply of public goods, developed in a stream of literature that has emphasized incentive-compatible mechanisms that blunt the ‘free-rider’ problem. Surveys of these theoretical subjects can be found in Barten and Bohm (1982), Diewert (1982), Diamond and McFadden (1974), Hurwicz (1986), and McConnell (1990). Cummings et al. (1986), Chap. 2–3, describe how CV methods developed from these underpinnings.

The initial versions of CV proposed by Davis (1963) and Randall et al. (1974) concentrated on incentive and free-ridership issues, with psychometric issues
treated as incidental problems that would disappear once subjects have positive incentives to be truthful. This focus was consistent with the views of many economists at that time (and now) that cognitive paradoxes observed in psychological experiments must disappear when a subject is adequately economically motivated. Davis employed an open-ended protocol, implementing a program proposed by Ciriacy-Wantrup (1947), which asked subjects for a stated WTP for a good. Randall implemented a proposal by Bradford (1970) to use a sequential bidding protocol in which subjects were asked for a series of votes on referendums whose payments define brackets converging to a WTP number.

Several arguments were put forward by Randall and others for the use of a sequential bidding rather than an open-ended protocol: The referendum task was viewed as simpler and less subject to misinterpretation than the open-ended task, because it more closely represented familiar market decisions. The referendum protocol was also judged preferable because it could be unambiguous about the relationship between payments by the subject and others, and about the good that would be delivered if the referendum passed. Other arguments made for the sequential bidding protocol were that it gave time for the subject’s preferences to ‘unfold’, and that the format reduced the opportunities for strategic misrepresentation.

Despite the arguments for the sequential bidding protocol, the most commonly used protocols in the early 1980s were open-ended or employed payment cards, the latter requesting a choice from a series of ranges. One reason for this was evidence from experiments on public goods (Bohm, 1972; Smith, 1979; Bishop et al., 1983; Schultz et al., 1981) suggesting that strategic misrepresentation was not quantitatively important in stated WTP for public goods. Another was that sequential bidding outcomes were found by some studies to be quite sensitive to starting point (Rowe et al., 1980; Mitchell and Carson, 1989; Boyle et al., 1985). Another motivation was the ease with which open-ended or payment card protocols could be incorporated in inexpensive mail surveys.

The referendum protocol, stripped of the sequential bidding feature so that the subject was offered a single bid that was varied across subjects according to an experimental design, was reintroduced by Bishop and Heberlein (1979) and Hanemann (1984). Further developments were made by Cameron and James (1987), Bowker and Stoll (1988), and Mitchell and Carson (1989). By 1993, the referendum protocol, with a single bid, or in some applications with a follow-up giving a double referendum, had eclipsed the open-ended protocol. A blue-ribbon panel assembled by NOAA (U.S. Department of Commerce, 1993) to assess the reliability of CV methods endorsed the single referendum protocol as the preferred procedure for CV analysis.

1 However, consumers may be as experienced and adept at responding to the question ‘How much do you want for that car?’ as to the question ‘Will you take US$500 for that car?’.
Three distinct aspects of a CV protocol are (1) the elicitation format, or form of the requested response (e.g., open-ended, referendum), (2) the implementation frame, or the link between survey response and the (subjective) probability that the policy will be implemented, and (3) the payment vehicle, or form in which payment was specified in the survey, the condition under which payment would be required, and the link between response and potential payment. CV practitioners have found that responses are influenced by the payment vehicle. This may arise from incentive effects of the ‘free-rider’ variety, or from the concerns of subjects about distributional implications and ‘fairness’.

A decisive implementation frame prompts the belief that the probability that the policy will be implemented depends on the subject’s response; i.e., the subject is induced to believe that there is a positive probability of being decisive. Most CV studies have not used a decisive implementation frame. An implementation frame in a referendum elicitation format is made decisive by prompting the belief that the probability of implementation is positively related to the survey plurality for the policy, or to the probability of a majority vote for the policy, at its actual cost to consumers. To accomplish this in an open-ended elicitation, the surveyor must persuade the respondent that her response will be counted as a ‘Yes’ if it exceeds actual cost, and that the probability of implementation is linked to survey plurality.

A decoupled payment vehicle states that if a good is provided, then its cost will be distributed across all consumers by a formula (such as an income tax surcharge) that does not depend on the subject’s CV response. Then, the CV response can affect only the probability that the good is provided, and not the payment level required if the good is provided. The decoupled payment vehicle is usually paired with a referendum elicitation format, and the term ‘referendum method’ has come to imply the use of a Yes/No question, presented as a hypothetical referendum with a decoupled payment vehicle.

The binomial response in the single referendum format is statistically inefficient compared to open-ended response, requiring substantially larger samples to achieve the same level of precision. The estimation problem is compounded by uncertainty about the shape of the underlying distribution of WTP (Bowker and Stoll, 1988; Cameron and Huppert, 1991; Cooper and Loomis, 1991; Duffield and Patterson, 1991; McFadden, 1994), so that WTP estimation requires added assumptions. Open-ended WTP surveys typically include a significant proportion of responses that are considered too high to be reliable—e.g., willingness to pay 20% of household income to prevent minor oil spills. These responses are an embarrassment in open-ended CV analysis, because they are not compatible with an interpretation of the technique as eliciting true economic values. The problem is avoided in the referendum method by not probing high values. In the CV study done by Carson et al. (1992) to assess the damages caused by the Exxon Valdez oil spill, for example, the highest value that was probed as an initial referendum bid was US$125, and we are left to guess the percentage that would have declared
themselves willing to pay several thousand dollars for that cause. Thus, this application of the referendum method may conceal implausible valuations that could provide an indication of the reliability of response.

What accounts for the widespread and relatively uncritical acceptance of a method that is statistically inefficient and requires relatively complex analysis? One important reason appears to be that the single referendum protocol and open-ended protocols do not yield the same results. In addition to avoiding extremely large responses, the referendum format reduces non-response and avoids zero responses (which in open-ended surveys are often associated with ‘protests’ about the fairness of the payment vehicle). Further, for the valuation tasks, bid levels, and analytic models used in most single referendum studies, it appears that measures of average WTP will often be substantially higher than average WTP obtained in an open-ended protocol (Desvousges et al., 1992; McFadden, 1994). Some CV practitioners argue for the referendum method because it mimics political referendums that are an accepted mechanism for social choice. However, referendum voting is itself a flawed social choice mechanism that is subject to continuing analysis and refinement by social scientists. While there seems to be general agreement on the advantages of using a decoupled payment vehicle, one need not adopt a binomial response format in order to frame the CV question as a referendum; e.g., the phrasing ‘what is the largest cost to your household at which you would vote for the proposition?’ could be used to combine a decoupled payment vehicle with an open-ended response. Further, if a starting bid focused response without biasing it, then the subject’s Yes/No response could be followed up by an open-ended question. This would provide strictly more information than, say, a double-referendum format. These possibilities do not appear to have been seriously considered for one exception, see Milon, 1989. A final justification for the referendum format is the assertion that it is incentive-compatible, while the open-ended format is not (Hoehn and Randall, 1987; Hanemann, 1994). However, closer examination shows that this claim is misleading.

Viewing a CV elicitation on the value of a public good as a game, a rational economic player will choose a response that maximizes expected pay-off. This behavior will take into account the distribution of possible costs of supplying the good. Conditioned on these costs, behavior will be determined by the mapping from costs and response into the payment required if the good is supplied, and the resulting net benefit, and the probability that the response is decisive for provision of the good (Palfrey and Rosenthal, 1990). First, if it is clear to the player that the elicitation is purely hypothetical, so that there is zero probability of being decisive

2 There is considerable evidence that referendum follow up questions are influenced by the initial question; see, for example, McFadden (1994). It seems likely that this would also happen for open-ended follow up questions. This is not a justification for ignoring the information available in follow-up questions, but does suggest that analysis should not take this information at face value.
and zero marginal linkage of response to payment level if the good is supplied, then the game has zero economic incentives for either truth or misrepresentation. Factors outside the economic model, such as the convenience of either truthful or standardized responses (such as focal points), or the motivations that influence stated attitudes in pure opinion polls, may affect response to the CV elicitation in this case. However, the economic incentive model is silent on the net impact of these effects under different elicitation formats.

Suppose instead the player believes there is a positive probability of being decisive; e.g., she is aware that she is one of a finite number of survey respondents and believes that the probability of implementation is proportional to the survey plurality in favor of the good. The nature of the good and the framing of the CV question might either encourage or discourage this belief. The frame could be more or less explicit about the cost of the good, and about the link from responses to a decision to promote supply of the good; e.g., statements such as ‘The cost of this good has yet to be determined precisely, but may be as low as b' or as high as b'' per household,’ and ‘We are doing this survey so that when we know the exact cost of the good, we can determine whether enough people would vote for the proposition to justify our putting it on the ballot.’ The subject’s behavior will also depend on whether she believes that, conditional on implementation, the marginal effect of response on prospective payment is zero. Again, this belief could be encouraged or discouraged by the framing of the payment vehicle. The decoupled payment vehicle, where the cost of the good is assessed without regard to individual responses if the referendum passes, should display zero marginal cost of response conditioned on implementation. Open-ended payment vehicles can be framed to imply either a positive or a zero marginal cost. For example, a decoupled payment vehicle could use the prompt ‘When you tell us the maximum cost in dollars to your household at which you would vote for providing the good, a small amount will make it less likely that this issue will go on the ballot, and a large answer will make it more likely. If the measure does go on the ballot and passes, then the cost to your household will be your share of the actual cost of the good. Your response on this survey will not be used to determine the payment required of your household if the measure passes.’ All of the open-ended CV questionnaires we have examined either specify a payment vehicle that has zero marginal cost, or leave the payment vehicle incompletely specified.

A first question is whether subjects placed in a CV experiment with economic incentives will respond rationally. We suggest that economic rationality is to some extent learned behavior, the result of experience in market transactions where the

3 A focal point is a ‘rounded-off’ response. For example, subjects asked for a dollar value will frequently give responses such as 0, 5, 10, 20, 50, 100, 500, etc. rather than distributing their responses continuously over the line. Strong focal point effects are common for economic quantities, and for spatial or temporal estimation tasks. They may arise because subjects think in terms of standardized categories, or because subjects find it economical to categorize information when it is reported.
sting of monetary punishment conditions out irrational excursions. In CV studies of natural resources the linkage from response to implementation is often tenuous, and the pay-off is often remote in time and in the experience of the consumer. Then, the analogies to market experience may be too weak to induce rational behavior. Further, if the subject accepts some, but not all, of the prompt on implementation and coupling, the incentives for misrepresentation may be increased rather than reduced. For example, a subject who believes the probability of being decisive is negligible or zero, but that there is some coupling of response to payment if the policy is implemented has a powerful incentive for misrepresentation. In addition, some experimental studies that are widely cited in the CV literature suggest that misrepresentation is quantitatively unimportant even when there are incentives to free-ride (Bohm, 1972; Smith, 1979), suggesting that subjects are influenced by ‘precommitments’ or ‘norms’ in a ‘supergame’ that encompasses far more than the immediate public good issue.

Suppose a subject believes that the probability of implementation, conditioned on actual cost c, is proportional to the survey plurality for the good at this cost. Let r denote the subject’s response, which in an open-ended format is stated WTP and in a referendum format is the largest bid at which the subject will give a ‘Yes’ response. Suppose the subject believes the linkage between response and prospective payment is given by a function $h(c,r)$. For a decoupled payment vehicle, if implementation occurs, then the subject’s payment is determined solely by the exogenous cost of the good, so that $h(c,r) = c$. The plurality for implementation at actual cost c is $\frac{N[1 - F(c)] + I(r \geq c)}{N + 1}$ where N is the number of survey respondents other than the subject, $F(\cdot)$ is a CDF expressing the subject’s beliefs about the responses of others in the survey, and $I(\cdot)$ is an indicator that is one when its argument is true, zero otherwise. If risk aversion is not a factor and the subject believes that the probability of implementation is a positive fraction λ times the survey plurality for the good, then the subject will choose a response that maximizes the expected value of the difference between true WTP ω and prospective payment $h(c,r)$, multiplied by the probability of implementation, or:

$$\text{Pay-off} = E_r(\omega - h(c,r)) \cdot \lambda \frac{N[1 - F(c)] + I(r \geq c)}{N + 1}$$

$$= K + \frac{\lambda}{N + 1} \int_0^r (\omega - h(c,r))G(c)dc,$$

where K is a constant independent of r, and G is the CDF of subject’s beliefs.

4 Compare a game in which there is a single open-ended question with one in which an open-ended question is preceded by a referendum question. If the two games are equivalent on decisiveness and the payment vehicle, then a rational subject’s response to the open-ended question will be the same in both games.
about \(c \), conditioned on the framing of the survey (which in a referendum format includes the bid). First consider a *decoupled* payment vehicle, \(h(\omega, r) = c \). Then, this pay-off is maximized at \(r = \omega \) as long as \(G \) is positive in a neighborhood of \(\omega \). Therefore, these beliefs lead to a truthful response. But these beliefs are consistent with *either* a referendum or an open-ended elicitation format, provided both use a decoupled payment vehicle, and both prompt the beliefs that the probability of implementation is proportional to survey plurality and that actual cost may be above or below their true WTP. This is a trivial Nash equilibrium in which the optimal action for the subject is independent of the actions of others.

One can repeat this exercise and obtain the same result when the subject believes that the probability of implementation is proportional to the probability that the survey yields a majority favoring the good. We conclude that both referendum and open-ended formats can be incentive-compatible, provided they are framed to successfully induce the beliefs above. The reason Hoehn and Randall (1987) reach an apparently contradictory conclusion is that they compare a referendum format with a decoupled payment vehicle and an open-ended format with a non-decoupled payment vehicle.

It is also possible that a subject will hold beliefs that lead to misrepresentation of WTP. If all the conditions in the last paragraph hold except that \(\omega \) lies below all plausible cost levels \(c \), then the consumer will choose \(r = 0 \) even if \(\omega > 0 \). Alternately, \(\omega \) lying above the support of \(c \) leads to extreme overstatement of \(\omega \), in either an open-ended or a referendum format. If a subject believes that the probability of implementation for a given cost level \(c \) is increasing in her response level \(r \) for \(r > c \), and that the payment vehicle is decoupled, then she has an incentive to overstate WTP. An open-ended elicitation that framed the link to implementation by stating that the probability of implementation is proportional to the benefit/cost ratio, with benefits estimated by the mean stated WTP of respondents, but that actual project cost would be spread evenly across consumers, would promote such beliefs. It is less natural, but not impossible, to induce a similar incentive-incompatibility in a single referendum survey by indicating that ‘Yes’ responses to high bid levels count more than proportionately in determining the probability of implementation.

Finally, consider the situation where the subject believes that the payment vehicle is coupled to response, so that \(\partial h/\partial r > 0 \). This creates an incentive to ‘free-ride’ by understating WTP. While an open-ended elicitation may be framed in a way that induces this belief, it need not be; e.g., the decoupled payment vehicle in an open-ended elicitation has \(\partial h/\partial r = 0 \).

In summary, if a CV elicitation is purely hypothetical, so the subject considers the probability of being decisive to be zero, then economic incentives are neutral, and provide *no* guidance to choice of elicitation format. If the CV experiment can be set up so that an economically rational subject believes there is a positive probability of being decisive, then it is possible to frame both open-ended and referendum elicitation.s so that if this subject accepts the frame, then responses will
be truthful. However, subjects may also hold beliefs that induce misrepresentation in either elicitation format, due to the framing of the experiment, or in spite of it. Open questions are whether CV practitioners are less likely in a referendum elicitation to introduce framing that induces incentive-incompatible beliefs; and whether elicitation format influences subjects’ suggestibility.

3. Anchoring

Anchoring describes a family of effects observed in many psychological studies of beliefs about uncertain quantities, such as the length of the Amazon or the height of the tallest redwood (Tversky and Kahneman, 1974). Subjects in these studies are asked to judge whether a particular value (the anchor) is higher or lower than the uncertain quantity, before stating their own estimate. A robust result is that the average estimate is pulled toward the anchor. Even a deliberately uninformative anchor can be quite effective. Subjects in one experiment were asked to write the last four digits of their social security number as an ID number, and then to indicate whether they believed that the number of ‘physicians and surgeons’ listed in the local yellow pages was higher or lower than that value. The subjects were then asked to indicate their best estimate of that number. A pronounced anchoring effect was observed (Wilson et al., 1994). Large anchoring effects have been reported in diverse contexts and populations of respondents, including experts (for example, see Northcraft and Neale, 1987).

A standard demonstration of anchoring effects in either objective estimation or WTP responses is to show that a Yes/No question induces a bias in responses to a subsequent open-ended question. It is possible that anchoring could influence the open-ended follow up question, by pulling the response toward the anchor, yet have no effect on the response proportions to the Yes/No question. However, a recent study of objective estimates (Jacowitz and Kahneman, 1995) has documented an anchoring-like effect in responses to the Yes/No question itself. This study was conducted in two phases. In the first phase, respondents provided open-ended estimates of fifteen uncertain quantities. The 15th and the 85th percentiles of the responses to each question were selected as anchors for the second phase. Subjects in two new groups, recruited from the same population as before, answered two questions for each quantity: they first evaluated whether a number (one of the anchors) was higher or lower than the quantity, then they estimated the quantity. The novel finding of the study was that the percentage of positive responses (‘the quantity is higher than X’) for subjects shown a high anchor was close to 30%, instead of the value of 15% which is expected if the open-ended and the referendum questions probe the same underlying belief. This robust effect was limited to high anchors, probably because the uncertainty about the quantity is asymmetric when zero provides a firm lower bound. It appears that
the consideration of a proposition (e.g., that the tallest redwood is more than 4000 ft tall) tends to increase the plausibility of that proposition. This suggestion effect is apparently quite automatic, although it can be justified if the subjects reason that a value mentioned in a question is unlikely to be absurd. Anchoring in Yes/No responses to objective estimation tasks can be interpreted as a bias induced by the referendum format: an open-ended question is the method of choice for measuring beliefs about a quantity, and the mention of a possible value in the referendum question can only distort pre-existing beliefs.

The usual explanation for the phenomenon of anchoring is that the anchor value creates, at least temporarily, the possibility that the quantity to be estimated could be near this value. This may pull the subject to the nearest end of her a priori range of possible values (Quattrone et al., 1984). Other psychological models related to anchoring are discussed by Wilson et al. (1994) and, for ‘anchoring’ to the status quo, Thaler and Johnson (1990). It is possible to construct a model of rational anchoring in which the subject behaves as a statistical decision maker who treats the anchor as a datum that with some probability is legitimate and can be used to update a prior distribution of possible values. However, the fact that anchoring occurs even when the anchor value is explicitly random indicates that much of the effect comes from how humans handle uncertainty, rather than from rational statistical processing of information. Anchoring in Yes/No referendum responses is very difficult to reconcile with statistical decision theory; only in contrived examples can one get overshooting of the anchor as a rational response. 5

The anchoring effect is well-known to students of contingent valuation, under the label of starting-point bias (Boyle and Bishop, 1987; Boyle et al., 1985; Mitchell and Carson, 1989; Silberman and Klock, 1989; McFadden, 1994). When respondents answer a referendum WTP question before providing follow up open-ended or referendum responses, the bid mentioned in the initial question has a pronounced effect on the subsequent response (Gregory and Furby, 1987; Folmer and van Ierland, 1989; Gregory et al., 1991). There is a striking similarity between the results obtained by Jacowitz and Kahneman for objective estimates and the pattern of estimates of WTP in open-ended versus referendum questions. In both cases the proportion of respondents who accept a high value in the referendum question is larger than the proportion of respondents who offer the same value on their own in response to an open-ended question.

An account in terms of anchoring and suggestion provides a simple unified treatment of the results in both objective estimation and WTP contexts. In contrast,

5 For example, if the subject’s prior is a mixture of distributions that have finite support, then an anchor that the subject interprets as a draw from this prior eliminates all distributions in the mixture that do not contain the anchor in their support, and the mean of surviving distributions may ‘overshoot’ the anchor. In contrast, a conjugate prior can never produce overshooting.
the incentive compatibility argument that was used to favor the referendum format in the CV context is not applicable to an estimation task. Further, in the likely case that a subject treats a CV survey as purely hypothetical with zero probability that response will influence either implementation or payment in case of implementation, there are no economic incentives at work.

The anchoring effects in CV experiments may interact with other factors that may influence the distribution of responses. Verbal protocol studies by Schkade and Payne (1993) suggest that subjects often treat CV questions as puzzles to which they must ‘construct’ a solution. While it is possible that the outcome of such problem-solving behavior would be revelation of a primitive latent value, it seems more likely that variations in the problem-solving protocols the subjects adopt will lead to a scatter of stated values. For example, Schkade and Payne find that some CV respondents estimate the cost of providing the good rather than engaging in a self-examination that tests their tastes for the good. It may be impossible to infer from stated values a definitive linkage back to primitive values, or at a deeper level to determine whether primitive values that link to stated values exist. However, extrapolating the psychometric observation that anchoring effects are weaker when a priori beliefs are stronger, one might expect the strongest anchoring effects when primitive beliefs are weak or absent, and the weakest anchoring effects when primitive beliefs are sharply defined. For example, if individuals have heterogeneous but sharply defined beliefs, then one should observe very little effect from anchors at different quantiles of the distribution of open-ended responses.

The experiment described in this paper demonstrates that the patterns of response to open-ended and referendum questions that are often taken as evidence of incentive-induced misrepresentation are in fact present in situations where there are clearly no economic incentives. This suggests that the emphasis in the CV literature on economic incentives may be misplaced, and that purely psychometric elements in survey response deserve more attention.

4. An experiment on anchoring in CV and objective estimation

We next report a study in which the experimental design of Jacowitz and Kahneman (1995) was used to compare referendum and open-ended formats in objective estimation tasks and in WTP for public goods. We document the similarity of results, and provide suggestive evidence that patterns of anchoring bias can be predicted from the characteristics of the distribution of responses to an open-ended question.

The subjects in this experiment were 370 adult volunteers, recruited from visitors to the San Francisco Exploratorium, a science museum. Volunteers were paid US$2 and informed that a US$1 contribution would be made to the museum.
The volunteers completed immediately at tables provided for this purpose a written questionnaire on five valuation and estimation tasks; typical completion time for the five tasks was 5–8 min. Subjects in a calibration group (N = 121) were recruited first. They were asked in an open-ended format for WTP for two public goods and for estimates of three objective quantities:

1. WTP per year to save 50,000 offshore Pacific Coast seabirds from small offshore oil spills, until ways are found to prevent spills or require owners of tankers to pay for the operation.
2. Estimate the height in feet of the tallest redwood in California.
3. Estimate the number of gallons of gasoline, on average, used by an individual car owner in the US in one month.
4. Estimate the average number of inches of rainfall that fall each year at Mount Wialeale in Hawaii, the wettest spot on earth.
5. WTP per year for California highway improvements and enforcement of traffic laws that in five years will reduce the number of traffic accidents by 20%.

The questions were asked in the order above, but subjects could look ahead or review their responses. Next, five anchor values were selected for each task, at approximately the 25, 50, 75, 90, and 95 percentiles of its calibration distribution. Five versions of the anchored questionnaire were prepared that cycled through the anchor values for each of the five questions. The remaining subjects were assigned randomly to one of five anchor groups, corresponding to the five versions of the anchored questionnaire. Anchor group subjects answered pairs of questions about each of the five topics. For the two WTP questions, subjects were first asked if they would vote in favor of a referendum that would require them to pay the anchor amount of money per year if the proposal were implemented. Then, they were asked to state the maximum amount at which they would vote for that cause. For the estimation questions, subjects were first asked whether the quantity was more than the anchor value, then asked to give their best estimate for the quantity.⁶

The results of the experiments are described in Tables 1–5, corresponding to each of the tasks. The first panel in each table summarizes the empirical distributions of open-ended responses, obtained respectively from the calibration group and from the follow up questions to each of the anchored groups after they responded to the starting point bid. The robust pattern of response is that the higher the starting point bid, the greater the upward shift in the distribution of responses. The second panel gives the probabilities that the calibration and binomial referendum responses exceed each starting point bid. As in Jacowitz and Kahneman (1995), anchoring leads the corresponding probabilities for the calibra-

⁶ Appendices with sample procedures, questionnaires, data, and extensive graphs are available at the web site http://emlab.berkeley.edu/users/mcfadden/index.html.
Table 1
Willingness-to-pay to save 50,000 off-shore seabirds per year

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Open-ended</th>
<th>Starting-point bid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US$5</td>
</tr>
<tr>
<td>US$0–4.99</td>
<td>19.8%</td>
<td>12.2%</td>
</tr>
<tr>
<td>US$5–24.99</td>
<td>27.3%</td>
<td>67.4%</td>
</tr>
<tr>
<td>US$25–59.99</td>
<td>31.4%</td>
<td>12.2%</td>
</tr>
<tr>
<td>US$60–149.99</td>
<td>12.4%</td>
<td>8.2%</td>
</tr>
<tr>
<td>US$150–399.99</td>
<td>5.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>US$400+</td>
<td>4.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Sample size 121 49 47 48 48 50

P(open-ended response ≥ bid) | 80.2% | 52.9% | 21.5% | 9.1% | 4.1%
(Std. error) | 3.6% | 4.5% | 3.7% | 2.6% | 1.8%

P(Referendum Yes/Bid) | 87.8% | 66.0% | 43.8% | 18.8% | 18.0%
(Std. error) | 4.7% | 6.9% | 7.2% | 5.6% | 5.4%

Median open/follow-up response | US$25.00 | US$10.00 | US$25.00 | US$25.00 | US$43.00 | US$50.00
(Std. error) | 4.7% | 6.9% | 7.2% | 5.6% | 5.4%

(Std. error) | 4.7% | 6.9% | 7.2% | 5.6% | 5.4%

Coefficient Std. error
Marginal effect of starting point bid | 0.284 | 0.032
K–J interquartile anchoring index | 0.273 | 0.136
Nonparametric referendum mean | US$167.33 | US$76.90
Referendum multiplier | 2.60 | 1.31
Parametric referendum mean | US$265.59 | US$138.96
Referendum multiplier | 4.13 | 2.32

1One observation of US$2,000,000 is excluded from the calculation of the open-ended mean.
2If the open-ended mean WTP of US$64.25 were representative of all California adults, then the total state WTP for protecting 50,000 seabirds would be US$1.49 B, or US$29,800 per bird.
3The upper bound to the distribution is assumed to equal the largest anchored response, US$1000. The reported std. error is the RMSE at the maximum possible bias, given the upper bound to the distribution.

...
Table 2
Height in feet of the tallest redwood in California

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Open-ended</th>
<th>Starting-point bid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180</td>
<td>280</td>
</tr>
<tr>
<td>0–179</td>
<td>26.5%</td>
<td>8.7%</td>
</tr>
<tr>
<td>180–279</td>
<td>23.1%</td>
<td>54.4%</td>
</tr>
<tr>
<td>280–369</td>
<td>26.5%</td>
<td>23.9%</td>
</tr>
<tr>
<td>370–549</td>
<td>14.9%</td>
<td>10.9%</td>
</tr>
<tr>
<td>550–1199</td>
<td>4.1%</td>
<td>2.2%</td>
</tr>
<tr>
<td>1200+</td>
<td>5.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sample size</td>
<td>120</td>
<td>46</td>
</tr>
</tbody>
</table>

\[
P(\text{Open-ended response} \geq \text{bid})
\]
(Std. error) 73.6% 50.4% 24.0% 9.1% 5.0%

\[
P(\text{Referendum Yes|Bid})
\]
(Std. error) 91.3% 82.2% 78.3% 55.6% 31.9%

\[
\text{Median open/follow-up response}
\]
(Std. error) 225.0 250.0 350.0 435.0 600.0 500.0

\[
\text{Mean open/follow-up response*}
\]
(Std. error) 490.8 282.0 407.0 465.7 570.4 844.2

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal effect of starting point bid</td>
<td>0.513</td>
</tr>
<tr>
<td>K–J interquartile anchoring index</td>
<td>0.974</td>
</tr>
<tr>
<td>Nonparametric referendum mean</td>
<td>975.1</td>
</tr>
<tr>
<td>Referendum multiplier</td>
<td>1.99</td>
</tr>
<tr>
<td>Parametric referendum mean</td>
<td>1196.1</td>
</tr>
<tr>
<td>Referendum multiplier</td>
<td>2.44</td>
</tr>
<tr>
<td>True value</td>
<td>366.2</td>
</tr>
<tr>
<td>Open-ended bias</td>
<td>34.0%</td>
</tr>
<tr>
<td>Single referendum bias</td>
<td></td>
</tr>
<tr>
<td>Nonparametric</td>
<td>166.3%</td>
</tr>
<tr>
<td>Parametric</td>
<td>226.6%</td>
</tr>
</tbody>
</table>

*The upper bound to the distribution is assumed to equal the largest anchored response, 2700. The reported std. error is the RMSE at the maximum possible bias, given the upper bound to the distribution.

Both of these hypotheses were rejected at the one percent significance level for all five topics. Similar hypotheses were tested for common means: all were rejected at the one percent level except for the gasoline question where rejection was at the two percent level. We conclude that anchoring effects are significant in both CV and objective estimation questions, for both the referendum response to a starting point bid, and the continuous response to the follow up question.

The third panel in Tables 1–5 contains summary statistics for the anchoring effect. The marginal effect of the starting point bid is obtained by regressing the
Table 3

Average monthly gasoline use by car owners

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Open-ended</th>
<th>Starting-point bid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>0–39</td>
<td>22.5%</td>
<td>25.0%</td>
</tr>
<tr>
<td>40–51</td>
<td>35.8%</td>
<td>31.3%</td>
</tr>
<tr>
<td>52–69</td>
<td>14.2%</td>
<td>22.9%</td>
</tr>
<tr>
<td>70–94</td>
<td>15.0%</td>
<td>8.3%</td>
</tr>
<tr>
<td>95–179</td>
<td>10.0%</td>
<td>10.4%</td>
</tr>
<tr>
<td>180+</td>
<td>2.5%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Sample size: 120

P(Open-ended response ≥ bid)

<table>
<thead>
<tr>
<th>(Std. error)</th>
<th>47.5%</th>
<th>41.7%</th>
<th>27.5%</th>
<th>12.5%</th>
<th>2.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Std. error)</td>
<td>3.8%</td>
<td>4.5%</td>
<td>4.1%</td>
<td>3.0%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

P(Referendum Yes/Bid)

<table>
<thead>
<tr>
<th>(Std. error)</th>
<th>75.0%</th>
<th>60.4%</th>
<th>53.0%</th>
<th>25.0%</th>
<th>17.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Std. error)</td>
<td>6.3%</td>
<td>7.1%</td>
<td>7.1%</td>
<td>6.3%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Median open/follow-up response

<table>
<thead>
<tr>
<th>(Std. error)</th>
<th>50.0</th>
<th>50.0</th>
<th>60.0</th>
<th>75.0</th>
<th>60.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Std. error)</td>
<td>0.9</td>
<td>2.9</td>
<td>2.8</td>
<td>3.0</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Mean open/follow-up response*

<table>
<thead>
<tr>
<th>(Std. error)</th>
<th>63.4</th>
<th>63.2</th>
<th>58.8</th>
<th>88.7</th>
<th>68.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Std. error)</td>
<td>6.8</td>
<td>8.1</td>
<td>3.0</td>
<td>19.3</td>
<td>5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal effect of starting point bid</td>
<td>0.275</td>
</tr>
<tr>
<td>K–J interquartile anchoring index</td>
<td>0.833</td>
</tr>
<tr>
<td>Nonparametric referendum mean*</td>
<td>150.6</td>
</tr>
<tr>
<td>Referendum multiplier</td>
<td>2.38</td>
</tr>
<tr>
<td>Parametric referendum mean</td>
<td>99.4</td>
</tr>
<tr>
<td>Referendum multiplier</td>
<td>1.57</td>
</tr>
<tr>
<td>True value</td>
<td>55.9</td>
</tr>
<tr>
<td>Open-ended bias</td>
<td>13.4%</td>
</tr>
<tr>
<td>Non-parametric referendum bias</td>
<td>169.5%</td>
</tr>
<tr>
<td>Parametric referendum bias</td>
<td>77.8%</td>
</tr>
</tbody>
</table>

*The upper bound to the distribution is assumed to equal the largest anchored response, 1000. The reported std. error is the RMSE at the maximum possible bias, given the upper bound to the distribution.

Follow up responses of subjects in the anchored groups on the starting point bids. For example, 0.284 in Table 1 is the slope coefficient from this regression, and can be interpreted as the increase in average open-ended follow up WTP when the starting point bid is increased by one dollar. The marginal effects for all tasks are significantly different from zero at the one percent significance level. Jacowitz and Kahneman (1995) introduce an anchoring index, defined as the difference in the median responses of groups at high and low anchors, divided by the difference in the anchors. Here we calculate this index using the first and third bids, which correspond approximately to the interquartile range in the calibration group.
Table 4
Annual rainfall at wettest spot on earth

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Open-ended</th>
<th>Starting-point bid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45</td>
<td>106</td>
</tr>
<tr>
<td>0–44</td>
<td>25.6%</td>
<td>10.0%</td>
</tr>
<tr>
<td>45–105</td>
<td>26.4%</td>
<td>72.5%</td>
</tr>
<tr>
<td>106–259</td>
<td>22.3%</td>
<td>15.0%</td>
</tr>
<tr>
<td>260–409</td>
<td>13.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>410–699</td>
<td>7.4%</td>
<td>2.5%</td>
</tr>
<tr>
<td>700+</td>
<td>5.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sample size</td>
<td>121</td>
<td>40</td>
</tr>
</tbody>
</table>

P(Open-ended response ≥ bid)
(Std. error) 74.4% 47.9% 25.6% 12.4% 5.0%

P(Referendum Yes|Bid)
(Std. error) 90.0% 65.1% 50.0% 37.2% 28.6%

Median open/follow-up response
(Std. error) 100.0 65.0 120.0 255.0 365.0 400.0

Mean open/follow-up response*
(Std. error) 10.2 5.6 18.2 30.2 28.9 56.6

Mean open/follow-up response
(Std. error) 20.9 14.3 17.2 18.2 26.8 41.5

Coefficient Std. error
Marginal effect of starting point bid 0.591 0.039
K–J interquartile anchoring index 0.884 0.108
Nonparametric referendum mean a 382.5 91.1
Referendum multiplier 2.04 0.54
Parametric referendum mean 920.3 410.5
Referendum multiplier 4.90 2.25
True value 451.0
Open-ended bias 58.4%
Nonparametric referendum bias 38.2%
Parametric referendum bias 104.1%

a The upper bound to the distribution is assumed to equal the largest anchored response, 1000. The reported std. error is the RMSE at the maximum possible bias, given the upper bound to the distribution.

distribution. By these measures, there is a strong anchoring effect in open ended follow up responses for all tasks, with the greatest impact for the redwood and rainfall estimation tasks that offer the least opportunity for deductive reasoning or problem solving. One might expect that CV responses would be less sensitive to anchoring at specified quantiles than are objective questions, since some portion of the dispersion of CV responses should arise from heterogeneity of tastes that for the individual are relatively sharply defined and hence relatively invulnerable to anchoring bias. The marginal effect of starting point bid is lowest for the CV tasks, supporting this expectation, but overall the anchoring patterns for the CV
Table 5
Willingness-to-pay to reduce CA auto accidents by 20%

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Open-ended</th>
<th>Starting-point bid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US$5</td>
<td>US$25</td>
</tr>
<tr>
<td>US$0–4.99</td>
<td>13.3%</td>
<td>23.4%</td>
</tr>
<tr>
<td>US$5–24.99</td>
<td>36.7%</td>
<td>51.1%</td>
</tr>
<tr>
<td>US$25–59.99</td>
<td>17.5%</td>
<td>17.6%</td>
</tr>
<tr>
<td>US$60–149.99</td>
<td>20.0%</td>
<td>8.5%</td>
</tr>
<tr>
<td>US$150–399.99</td>
<td>7.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>US$400 +</td>
<td>5.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sample size</td>
<td>121</td>
<td>47</td>
</tr>
</tbody>
</table>

P(Open-ended response ≥ bid)

<table>
<thead>
<tr>
<th>(Std. error)</th>
<th>3.1%</th>
<th>4.5%</th>
<th>4.3%</th>
<th>3.0%</th>
<th>2.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Referendum Yes/Bid)</td>
<td>76.6%</td>
<td>63.5%</td>
<td>28.6%</td>
<td>27.3%</td>
<td>12.5%</td>
</tr>
<tr>
<td>(Std. error)</td>
<td>6.2%</td>
<td>7.3%</td>
<td>6.5%</td>
<td>6.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Median open/follow-up response</td>
<td>US$22.50</td>
<td>US$7.50</td>
<td>US$25.00</td>
<td>US$30.00</td>
<td>US$50.00</td>
</tr>
<tr>
<td>Mean open/follow-up response</td>
<td>US$97.82</td>
<td>US$19.37</td>
<td>US$60.45</td>
<td>US$37.02</td>
<td>US$110.66</td>
</tr>
</tbody>
</table>

Coefficient Std. error

Marginal effect of starting-point bid 0.216 0.090
K–J interquartile anchoring index 0.409 0.114
Nonparametric referendum mean* US$178.88 US$102.12
Referendum multiplier 1.83 1.12
Parametric referendum mean US$404.19 US$282.30
Referendum multiplier 4.13 3.04

*If the open-ended mean of US$97.82 were representative of the WTP of Californians, then the residents of the state would be willing to pay US$2.27 B to reduce automobile accidents by 20%, or approximately US$8258 per accident avoided. For comparison, California spends US$5.63 B State Plus Federal on highway construction and improvement each year.

The upper bound to the distribution is assumed to equal the largest anchored response, US$1500. The reporter std. error is the RMSE at the maximum possible bias, given the upper bound to the distribution.

and objective estimation tasks are remarkably similar. One possible explanation is that many subjects have poorly defined tastes for the CV issues in this study, and are strongly influenced by the anchor cues; another is that the bid establishes a ‘norm’ for socially responsible behavior that some subjects are reluctant to violate.

The usual objective of CV studies is estimation of social value, given by population mean WTP. For referendum data, this estimation requires either nonparametric statistical analysis, or an assumption that the WTP distribution is contained in a parametric family whose parameters can be estimated by maximum likelihood. We report estimates using both approaches.
The nonparametric referendum mean is an estimate of a population mean WTP derived from the binomial single referendum responses, as follows: Let $F(\omega)$ denote the CDF of population WTP that is supposed to explain referendum response; e.g., for each bid b, $P(\text{WTP} \leq b) = F(b)$. Assume responses are non-negative. Then, the population mean satisfies:

$$E(\text{WTP}) = \int_0^{+\infty} \omega F'(\omega) d\omega = -\int_0^{+\infty} [1 - F(\omega)] d\omega,$$

with the second equality obtained using integration by parts. Suppose b_i are referendum bids for $i = 1, \ldots, K$, augmented by $b_0 = 0$ and $b_{K+1} (= a postulated upper limit on the WTP distribution). Partitioning the domain of integration and evaluating $F(\omega)$ at the end points gives the bounds:

$$\sum_{i=0}^{K} (b_{i+1} - b_i) [1 - F(b_{i+1})] \leq E(\text{WTP}) \leq \sum_{i=0}^{K} (b_{i+1} - b_i) [1 - F(b_i)],$$

Letting $F_a(b_i)$ denote sample estimates of the probabilities of ‘No’ at the referendum points, a nonparametric approximation to $E(\text{WTP})$ is:

$$E(\text{WTP}) \approx \sum_{i=0}^{K} (b_{i+1} - b_i) \left[1 - \left(F_a(b_{i+1}) + F_a(b_i) \right) / 2 \right].$$

The nonparametric referendum means given in Tables 1–5 are obtained using this approximation. The referendum multiplier is the ratio of the estimated referendum mean to the estimated mean from the calibration group. This is an index of the degree to which estimates of population mean are sensitive to the elicitation format, with values greater than one corresponding to the case where the mean estimated from the binomial single referendum responses exceeds the open-ended response mean.

For the rainfall task, Fig. 1 graphs the complementary CDF estimated from the sample proportions of ‘Yes’ responses to each referendum bid. For comparison, the sample proportions of open-ended responses at these bids are plotted in the same way. The nonparametric mean estimator above can be interpreted as an estimate of the area under this empirical referendum complementary CDF. Similarly, the mean of the open-ended responses can be interpreted as the area under the empirical open-ended complementary CDF. The rightward shift of the referendum curve relative to the open-ended curve implies a referendum multiplier greater than one. The remaining tasks produce similar graphs.

An alternative to estimating $E(\text{WTP})$ nonparametrically is to assume that $F(\omega)$ is in a parametric family, estimate these parameters by maximum likelihood using the referendum response data, and then report the parametric referendum mean of this estimated distribution. This is the approach most commonly adopted by CV.

The variance of this estimator is $\sum_{i=0}^{K} (b_{i+1} - b_i)^2 F(b_i) (1 - F(b_i)) / \eta_i$; and the maximum bias is $b_1 / 2 + \sum_{i=0}^{K} (b_{i+1} - 2b_i + b_{i-1}) F(b_i) / 2$.

\[1\]
practitioners. To apply this method, we assume that $F(\cdot)$ has a log normal distribution. Then, the log likelihood of the referendum response data is:

$$L = \sum_{i=1}^{5} n_i \left(\hat{F}_i \cdot \left[1 - \Phi \left(\log(b_i) - \mu \right) \right] + \left(1 - \hat{F}_i \right) \cdot \Phi \left(\log(b_i) - \mu \right) \right),$$

where n_i is the number of observations in anchor group i, \hat{F}_i is the sample frequency of ‘No’ responses to starting point bid b_i, and μ and σ are parameters. If WTP has this distribution, then its mean is $\exp(\mu + \sigma^2/2)$. The parametric referendum means in Tables 1–5 are given by this expression, evaluated at the maximum likelihood estimates. A referendum multiplier is also given for this referendum mean estimator. Consistent with the previous results based on non-parametric methods, the parametric estimates indicate that in all five tasks, the referendum multipliers are substantially larger than one, showing that the single referendum format leads to much higher estimates of mean response than do open-ended questions. These results appear to be typical of tasks where beliefs are skewed to the right because of a natural lower bound (at zero), and where the anchors are either balanced or skewed to the right relative to the calibration distribution.8 The standard errors on the statistics that compare the open-ended and referendum means are large, reflecting the intrinsic statistical difficulty in

8 Presumably, tasks with a natural upper bound that causes the calibration distribution to be skewed to the left, and/or anchors that are skewed to the left relative to the calibration distribution, would reverse the effect and produce anchor responses with means lower than the open-ended responses.
estimating a moment that is sensitive to the thickness of the upper tail of the distribution of WTP. 9

Because a subject gave responses to all five tasks, and in the written questionnaire had the opportunity to preview or review all responses, we tested to see if answers to different tasks were correlated. We found a significant positive correlation of calibration and anchored follow up responses between the two CV tasks, and zero correlation between an objective estimation task and any of the remaining tasks. The correlation between CV tasks is consistent with the commonly observed correlation of CV responses and income. The experiment did not collect socioeconomic data, so we are unable to report the partial correlation of the CV responses with income controlled. 10

Kolmogorov–Smirnov tests of the parametric assumption of a log normal family are given in Table 6. In most cases, the log normal specification is accepted. However, the power of this test is low, and close examination indicates that deviations arising from concentration of responses at focal points would be likely to lead to rejection in larger samples. For example, 65% of all open-ended responses to the CV question on seabirds fell at the values US$5, US$10, US$20,
US$25, US$50, and US$100; this fraction is about the same in both the unan-
chored and the anchored groups. The auto accident question yields 58% of
responses at these focal points. Similar patterns emerge in responses to the
estimation questions: 38% of redwood responses are at 100, 200, 300, 400, or 500
ft; 49% of gasoline responses are at 40, 50, 60, 75, and 100 gallons; 36% of
rainfall responses are at 100, 200, 300, 400, or 500 inches. Across the five tasks,
there are no consistent or statistically significant differences in the overall propor-
tions of focal point responses between open-ended and anchored follow up
responses. Thus, anchoring appears to operate by moving some subjects from one
focal point to a second closer to the anchor, rather than by pulling them away from
focal points. This implies that the pull of anchoring has a complex interaction with
the pull of focal points. The experimental results on the CV questions suggest that
in an open-ended follow up to a referendum bid that is located at a focal point,
such as US$25, subjects tend to give a higher proportion of open-ended follow up
responses at the exact bid than is the case for unanchored response. Thus, there
appears to be some reinforcement of the anchoring effect when the anchor is at a
focal point. This pattern does not emerge in the estimation tasks. Other than these
observations, there are no obvious differences in the anchoring power of bids
placed at focal points or at non-focal points, or differences between CV and
estimation tasks in the interaction of anchors and focal points.

The accuracy of open-ended versus referendum estimates of objective quantities
is incidental to this paper, but some readers may want to know how subjects do.
The bottom panel in Tables 2–4 gives the true values, and the percent bias in the
mean estimates obtained from the open-ended responses of the calibration group,
and from the nonparametric and parametric referendum means; Table 7 summarizes
the comparisons across tasks. Open-ended estimates are moderately accurate
for the redwoods and gas consumption tasks, and too low for the rainfall task. The
referendum responses are, by the parametric mean measure, biased upward by a
factor of two or more on all tasks. By the nonparametric mean measure, the
referendum responses have a substantial upward bias for redwoods and gas
consumption tasks, and are reasonably accurate for the rainfall task. These results

<table>
<thead>
<tr>
<th>Table 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of behavior across tasks</td>
</tr>
<tr>
<td>Criterion</td>
</tr>
<tr>
<td>Marginal effect of starting point bid</td>
</tr>
<tr>
<td>K–J interquartile anchoring index</td>
</tr>
<tr>
<td>Nonparametric referendum multiplier</td>
</tr>
<tr>
<td>Parametric referendum multiplier</td>
</tr>
<tr>
<td>Bias in open-ended mean</td>
</tr>
<tr>
<td>Bias in nonparametric referendum multiplier</td>
</tr>
<tr>
<td>Bias in parametric referendum multiplier</td>
</tr>
</tbody>
</table>
suggest that for tasks with a natural lower bound at zero, estimating the mean from binomial referendum data may substantially and systematically inflate these estimates relative to true values. The open-ended responses do not appear to be systematically biased, but do show that population beliefs about objective facts are soberingly inaccurate.

The contingent valuation questions described in Tables 1 and 5 have no objective benchmark against which they can be judged, but it is possible to ask whether the implied mean values appear to be consistent with past political and social choices. The accidents question in Table 5 reflects a substantial user component to value. If subjects interpret the benefits and costs as perpetuities, then given accident frequencies in California, the mean open-ended response would imply that the sampled sub-population of Californians are willing to pay US$8258 to avoid an accident. This number is in the ballpark of actual accident costs. The referendum parametric mean response is four times this amount. The seabirds question in Table 1 elicits existence value by making it clear that the birds are off shore where they will not be observed by humans. If the open-ended mean WTP of US$64.25 were representative of California adults, it would imply a total WTP by Californians of nearly US$30,000/bird saved; the referendum parametric mean response is four times larger. These results follow a pattern observed in CV studies that for goods with use value, mean WTP may be reasonably consistent with revealed market values, while for goods with only existence value, estimated WTP seems high relative to the cost of interventions that survive the existing political process. Society may in fact seriously under-invest in the environmental resource ‘commons’, but upward bias in estimated WTP may be another reason for the striking numbers that come out of some CV studies.

The similarity of anchoring effects across a variety of topics raises the question of whether anchoring behavior is sufficiently regular to be predictable. Both the dispersion of responses in the population and the degree of anchoring is less for topics where there is more prior information or narrower natural bounds. This suggests using the distribution of calibration group responses as a benchmark for the measurement of anchoring effects, in the spirit of the Kahneman–Jacowitz anchoring index. Let $p = F(\omega)$ denote the CDF of open-ended responses, and $r = G(\omega; b)$ denote the CDF of responses to the open-ended follow up to a starting point bid b. Define $q = F(b)$ and $r = G(F^{-1}(p); F^{-1}(q)) \equiv \psi(p; q)$. Then, ψ is a CDF that will be shifted by anchoring when q changes, but may be relatively stable across tasks for a fixed anchoring percentile q. If there are primitive beliefs that are themselves heterogeneous in the population, as in valuation questions where subjects may have disperse but sharply defined tastes, the function ψ should be defined by first forming the functions above conditional on primitive beliefs, and then forming the expectation with respect to the distribution of these beliefs. The more dispersed the primitive beliefs, the weaker the effects of anchoring for a given observed distribution of open-ended responses. While we use ψ purely as a descriptive device, it could be given a Bayesian interpretation as
an inverse posterior distribution formed by combining a prior \(F \) with a bid \(b \) that is treated as an observation drawn from this distribution.

Fig. 2 plots estimates of the \(\psi \) functions for the rainfall task, obtained using the calibration and anchored empirical CDFs, smoothed to be continuous. (The smoothing method first obtains the empirical analogs of \(p = F(\omega) \) and \(r = G(\omega,b) \), defined at all responses \(w \) that appear in either the unanchored or the anchored groups. The empirical analog of \(F \) is then inverted, with linear interpolation between unanchored responses used to construct a unique inverse. Finally, the empirical analog of \(r = G(F^{-1}(p);b) \equiv \psi(p,q) \) for \(q = F(b) \) is calculated and smoothed using a kernel smoother in \(p \)-space, \(\cos(10\pi(p'-p)) \cdot I(|p'-p| < 0.05) \). (This can also be interpreted as a weighted symmetric nearest neighbor estimator.) The anchoring point for an anchored CDF is denoted by a dot in Fig. 2; this also indicates the relationship between the single referendum binomial response and the probability that the open-ended responses are no greater than the starting point bid. An estimate of the CDF of WTP from the referendum binomial responses can be interpreted as a curve fitted to these dots. If there were no anchoring, then \(\psi \) would coincide with the 45° diagonal. When dots are below the diagonal, there is inflation in reported values at this anchor relative to open-ended responses. When the anchored curve is a steep ogive through the dot corresponding to its anchor value, the anchoring concentrates responses as well as attracting them toward the anchor. Over a wide range of ‘plausible’ anchor values, one would expect higher anchors to shift the \(\psi \) function to the right, so that these functions for high anchoring percentiles \(q \) should stochastically dominate those for low \(q \); i.e., \(\psi(p,q) \) should be a non-increasing function of \(q \). Anchors drawn from the extreme tails of the \(F \) distribution may be less powerful, because they are
discounted as implausible, so that ψ may decrease less rapidly, or even reverse direction, with increasing q near the extremes.

The empirical curves do show some reversals that violate stochastic dominance, as one would expect given the relatively small anchor group sample sizes. However, the overall patterns are consistent with (1) stochastic dominance of distributions conditioned on higher anchors over those conditioned on lower anchors, (2) some degree of concentration about the anchors, and (3) referendum multipliers exceeding one for anchors at the 50th percentile and higher. It is beyond the resolution of these experiments to determine if there are dominance reversals in the tails of the anchored follow up responses, or between anchors drawn from the extreme tails of the unanchored distribution. The ψ curves for the remaining tasks show roughly the same pattern as the rainfall task, but dominance reversals are more common.

Fig. 3 compares the ψ curves across tasks for 50 percentile anchoring bids. The ‘smoothed stair-step’ shapes of the curves arise from smoothing observations that contain focal points. There are some variations across tasks in the effect of anchoring on the binomial response, with Tasks 2 and 4 showing the most substantial upward shift in location. The degree of concentration appears to be comparable across tasks. Similar patterns emerge for the 25, 75, 90, and 95 percentiles.

The match of the curves for different tasks, holding the percentile fixed, is imperfect. A simple hypothesis which says that $\psi (p; q)$ is the same for every task, given q, can be rejected statistically; Table 8 gives the test statistics (the extensive statistical foundation for these tests is relegated to Appendix A). This suggests that there are some features of anchoring that are idiosyncratic to
particular tasks. The interaction of focal points and anchoring is a particular problem that appears to be task-specific. One would also expect the hypothesis to fail if CV responses arise from heterogeneous, sharply defined tastes that are relatively impervious to anchoring. Inspection of the terms contributing to the test statistic suggest that rejection arises primarily from focal point effects in each task, rather than from distinguishable features of CV and objective estimation tasks. We take this observation to support the view that anchoring effects operate in much the same way in CV and objective estimation tasks, and that the gap between open-ended and referendum results in CV analysis is largely attributable to anchoring. Unfortunately, anchoring behavior does not itself appear to be simple and stable enough so that it is possible to predict and adjust for its effects on single referendum CV.

5. Conclusions

This paper has investigated the patterns of response that are found in contingent valuation studies of public goods using open-ended or single referendum (Yes/No) questions. It has examined the claim that the referendum protocol is incentive-compatible, while the open-ended protocol is not. We find that this claim is misleading because in the case of purely hypothetical CV questions there are no economic incentives at work, and because both protocols can be framed to be incentive-compatible if subjects are economically rational and believe that the payment vehicle is decoupled and there is some probability they will be decisive.

We have conducted an experiment that examines the impact of anchoring on referendum responses in both CV and objective estimation tasks. We find strong anchoring effects that follow similar patterns in both types of tasks. For the CV tasks, the effects of anchoring are similar to the differences in results from open-ended and referendum responses found in the CV literature. An account in terms of anchoring provides a simple unified treatment of the results in both objective estimation and WTP contexts. The patterns of response to open-ended and referendum questions that are often taken as evidence of incentive-induced misrepresentation are in fact present in situations where there are clearly no

Table 8
Chi-square tests for invariance of anchoring across tasks

<table>
<thead>
<tr>
<th>Anchoring percentile</th>
<th>Test statistics</th>
<th>Degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>715.3</td>
<td>36</td>
</tr>
<tr>
<td>50</td>
<td>63.6</td>
<td>36</td>
</tr>
<tr>
<td>75</td>
<td>837.8</td>
<td>36</td>
</tr>
</tbody>
</table>

The test statistics were calculated at the percentiles 0.1, 0.2,...,0.9. All the statistics are significant at the one percent level, so the hypothesis of a common distribution is rejected.
economic incentives. We conclude that the emphasis in the CV literature on economic incentives is misplaced, and that psychometric elements in survey response deserve more attention.

Our analysis suggests a number of additional questions that could be addressed with further experiments. Are the dispersion of answers to objective tasks and the susceptibility of subjects to anchoring sensitive to incentive payments for accuracy? Are measures such as the K–J Interquartile Anchoring Index attenuated for objective tasks with heterogeneous true answers? 11 Are anchors at focal response levels more or less effective than anchors at non-focal levels? Do calibration or follow up open-ended focal responses represent heuristics to ration effort that can be refined by probing, or do they reflect more fundamental ways in which humans organize quantitative information? Are there factors beyond skewness of the calibration distribution, such as experimenter/subject interaction, that determine whether the referendum multipliers for anchors at the calibration median are greater than one? In an experimental setting where subjects are decisive, do subjects show ‘free-rider’ incentive effects if and only if the payment vehicle is coupled? Are ‘free-rider’ effects stronger in a non-decisive experiment with a coupled payment vehicle than they are in a decisive experiment? In a public goods laboratory experiment where the pay-offs to subjects are heterogeneous and uncertain, does referendum CV provide accurate statements of WTP?

An open-ended format is a natural standard for objective estimation tasks. However, we do not endorse open-ended CV as a reliable ‘unbiased’ protocol. We share the skepticism of some authors about the reliability of contingent valuation of public goods, particularly for existence values (see Hausman, 1993; Diamond and Hausman, 1994). We do conclude that the single referendum protocol is statistically inefficient, and for tasks with a natural lower bound tends to give mean responses that are systematically higher than their open-ended counterparts. Then, one should be able to reduce variance in WTP estimates, and reduce the risk of obtaining results that are distorted by anchoring, by using an open-ended protocol incorporating a decoupled payment vehicle, rather than a single referendum protocol.

Because anchoring leads to estimates of referendum mean WTP that are sensitive to the bid levels set by the experimenter, variation in experimental design across researchers will in itself lead to inconsistencies in study outcomes. More seriously, single referendum CV invites manipulation of results by choice of design. High mean WTP numbers can be obtained by selecting a design with high anchors. Conversely, using low anchors in combination with parameterizations or bounds that make the upper tail of the WTP distribution thin can be used to obtain

11 Examples are ‘What is your cholesterol count?’, ‘How many gallons of water did your household consume last month?’, and ‘How many dollars per month does your local library spend on new books?’.
low mean WTP numbers. There do not appear to be any simple design rules that a
responsible CV practitioner could use to guarantee reliable, reproducible results.

We believe that the referendum method for CV would benefit from very careful
examination of the effects of agenda setting, payment vehicles, framing, and
experimental design of bids. If CV practitioners adopt the referendum approach,
we see no reason not to use an open-ended follow up to the starting bid, which
provides far more information on WTP and information on plausibility of response
than alternatives such as the double referendum method.

Acknowledgements

This study was supported by grants from AFOSR and the National Science
Foundation to Danny Kahneman, and by a Cox Endowment grant to Daniel
McFadden. We thank Quong Vong for useful comments.

Appendix A. Test statistic for the hypothesis that $\psi(p; q)$ is invariant across
tasks

For a specified task, let $q = F(\omega)$ denote the CDF of unanchored responses,
and let $p = G(\omega; b)$ denote the CDF of open-ended follow up responses to an
anchor b. Define $r = \psi(p; q) = G(F^{-1}(p); F^{-1}(q))$, where $\omega = F^{-1}(p)$ is the
smallest ω satisfying $F(\omega) \geq p$. Then, $\psi(p; q)$ is the proportion of anchored
responses below unanchored percentile p when the anchor is at unanchored
percentile q. The null hypothesis is that $\psi(\cdot; q)$ is invariant across tasks, given q.
We develop a large-sample test for this hypothesis under the assumptions that F
and G are continuously differentiable with positive densities f and g, respec-
tively. These assumptions are inconsistent with the existence of point masses at
focal points, which appear in our data and cause jumps in ψ at arguments p
whose inverse images $F^{-1}(p)$ are focal point values. Since focal points appear to
be specific to the physical units and scaling of particular tasks, it seems unlikely
that the null hypothesis can be sustained in data where focal points are important.
A statistical analysis of the full problem including jumps at focal points is beyond
the scope of this paper. The following analysis ignores the focal point problem. In
net, this should make the actual probability of rejection lower than the nominal
probability, since with jumps the limiting distribution involves mixtures of normal
and point processes.

Let $F(\omega)$ denote the empirical CDF of unanchored responses from a sample of
size n_u, and $G(\omega; b)$ denote the empirical CDF of open-ended responses, follow-
ing up anchor bid b, from an anchored sample of size n_a. Suppose that b is
selected so that $F(b)$ is approximately equal to a specified percentile q_0. Then, the
empirical analog of $\psi(p; q_0)$ is $\hat{\psi}(p; q_0) = G(F^{-1}(p); b)$. Let $\lambda = n_u/n_a$ and
\[b_0 = F^{-1}(q_0). \]

Write \(n_{1/2}^{1/2} \left[\hat{\psi}(p; q_0) - \psi(p; q_0) \right] = A(p) + B(p) + C(p) + D_1(p) + D_2(p) \), where:

\[A(p) = n_{1/2}^{1/2} \left[\hat{G}(F^{-1}(p); b_0) - G(F^{-1}(p); b_0) \right], \]
\[B(p) = n_{1/2}^{1/2} \left[G(\hat{F}^{-1}(p); b_0) - G(F^{-1}(p); b_0) \right], \]
\[C(p) = n_{1/2}^{1/2} \left[G(F^{-1}(p); b) - G(F^{-1}(p); F^{-1}(q_0)) \right], \]
\[D_1(p) = n_{1/2}^{1/2} \left[\hat{G}(\hat{F}^{-1}(p); b) - G(\hat{F}^{-1}(p); b) - G(F^{-1}(p); b) + G(F^{-1}(p); b) \right], \]
\[D_2(p) = n_{1/2}^{1/2} \left[\hat{G}(F^{-1}(p); b) - G(F^{-1}(p); b) + G(F^{-1}(p); b) + G(F^{-1}(p); b) \right], \]
\[D_3(p) = n_{1/2}^{1/2} \left[G(\hat{F}^{-1}(p); b) - G(F^{-1}(p); b) + G(F^{-1}(p); b) + G(F^{-1}(p); b) \right], \]

First, \(A(p) \) is an empirical process on \((0,1)\), with expectation zero and a covariance function: \(K_A(p; r) = G(F^{-1}(p \wedge r); b_0) - G(F^{-1}(p); b_0) \cdot G(F^{-1}(r); b_0), \) which converges weakly to a normal process with the same covariance function; see p. 109 of Shorack and Wellner (1986). Second, by the Bahadur representation theorem (Serfling, 1980, p. 91), the empirical quantile process can be written

\[\hat{F}^{-1}(p) = F^{-1}(p) + \frac{p - \hat{F}(F^{-1}(p))}{f(F^{-1}(p))} + o_p(n_e^{-1/2}). \]

Further, \(n_{1/2}^{1/2} \left[p - \hat{F}(F^{-1}(p)) \right] \) is an empirical process with covariance function \(p \wedge r - p \cdot r \) that converges weakly to a Brownian bridge. Then, using the continuous differentiability of \(G, B(p) \) converges weakly to a normal process with covariance function:

\[K_B(p; r) = \lambda \left[\frac{g(F^{-1}(p); b_0) \cdot g(F^{-1}(r); b_0)}{f(F^{-1}(p)) \cdot f(F^{-1}(r))} \right] \cdot [p \wedge r - p \cdot r]. \]

Third, using the Bahadur representation, \(b \) can be written:

\[b = b_0 + \frac{q_0 - \hat{F}(b_0)}{f(b_0)} + o_p(n_e^{-1/2}) + \epsilon, \]

where \(\epsilon \) is a disturbance introduced by rounding the anchor to a convenient number. We shall assume the rounding is done in such a way that its impact is

\[p \wedge q = \min(p, q). \]
asymptotically negligible; e.g., $n_i^{-1/2} \varepsilon = o_p(1)$. Then, $C(p)$ is an empirical process with covariance function:

$$K_C(p;r) = \lambda \frac{G_a(F^{-1}(r);b_0) \cdot G_a(F^{-1}(p);b_0)}{f(b_0)^2} \cdot q_0(1 - q_0),$$

and converges weakly to a normal process. The processes B and C are correlated, with covariance function:

$$K_{B,C}(p;r) = \mathbb{E}[B(p)C(r)]$$

$$= \lambda \cdot \frac{g(F^{-1}(r);b_0)}{f(F^{-1}(p))} \cdot \frac{G_a(F^{-1}(r);b_0)}{f(b_0)} \cdot (p \wedge q_0 - p \cdot q_0).$$

The process A is independent of the processes B and C. Then, the process $A + B + C$ is asymptotically normal with expectation zero and covariance function:

$$K_{A+B+C}(p;r) = G(F^{-1}(p \wedge r);b_0) - G(F^{-1}(p);b_0) \cdot G(F^{-1}(r);b_0)$$

$$+ \lambda \left[\frac{g(F^{-1}(p);b_0) \cdot g(F^{-1}(r);b_0)}{f(F^{-1}(r)) \cdot f(F^{-1}(p))} \right] \cdot [p \wedge r - p \cdot r]$$

$$+ \lambda \cdot \frac{G_b(F^{-1}(p);b_0) \cdot G_a(F^{-1}(r);b_0)}{f(b_0)^2} \cdot q_0(1 - q_0)$$

$$+ 2 \lambda \cdot \frac{g(F^{-1}(p);b_0)}{f(F^{-1}(p))} \cdot \frac{G_a(F^{-1}(r);b_0)}{f(b_0)} \cdot (p \wedge q_0 - p \cdot q_0).$$

Finally, a lengthy argument, omitted here, establishes that the terms $D_i(p)$ for $i = 1, 2, 3$ are asymptotically negligible.

Let $t = 1, \ldots, T$ index the tasks, and let it be $\gamma = nat/nat$ the ratio of the anchored sample sizes across tasks. Define a covariance function Ω with elements:

$$\Omega_{i,i'}(p;p') = \begin{cases}
\gamma_i K_{A+B+C}(p;p') + K_{A+B+C}^1(p;p') & \text{if } t = t' \\
K_{A+B+C}^1(p;p') & \text{if } t \neq t'
\end{cases}$$

for $t, t' = 2, \ldots, M$. Let q_0 denote a fixed anchoring percentile. We approximate a generalized Cramer–von Mises test statistic by selecting a grid of comparison percentiles (p_1, p_2, \ldots, p_T) and considering the quadratic form:

$$Q = \sum_{t,t'=2}^T \sum_{j=1}^J \left[\hat{\psi}^i(p_j;p_0) - \hat{\psi}^1(p_j;p_0) \right] \cdot \Gamma_{i,i'}(p_j;p_{j'})$$

$$\cdot \left[\hat{\psi}^i(p_{j'};p_0) - \hat{\psi}^1(p_{j'};p_0) \right].$$
where Γ is the inverse of Ω. Under the null hypothesis, this statistic is asymptotically chi-square with $J(T - 1)$ degrees of freedom. A limiting Cramér–von Mises statistic could be obtained by refining the grid (see pp. 30–32 of Durbin, 1973). However, for this application we use directly the approximation above.

Calculation of Ω requires consistent estimates of the densities f and g and the derivative G_b at q_t and p_1, \ldots, p_J. We approximate these using the log normal approximation to the distribution of responses:

$$f(\omega) = (1 - \pi_c) \cdot \phi((\log(\omega) - \mu_c) / \sigma_c) / \omega \sigma_c,$$
$$g(\omega;b) = (1 - \pi(b)) \cdot \phi((\log(\omega) - \mu(b)) / \sigma(b)) / \omega \sigma(b),$$

where μ_c and σ_c are sample estimates of the mean and standard deviation of log response in the calibration sample, conditioned on observations being positive, π_c is the proportion of zero observations in the calibration sample, and $\mu(b), \sigma(b)$, and $\pi(b)$ are corresponding estimates for the sample anchored at b. To approximate G_b, we assume that locally $\sigma(b)$ is constant and $\mu(b) = \mu_0 + \mu_1 b$, and estimate μ_1 by regressing log responses on $\log(b)$ across the anchor groups. Then, $G_b(\omega;b) = -\mu_1 g(\omega;b)/b$. In large samples, these approximations should be replaced by appropriate nonparametric density estimators.

References

